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1. Introduction 

Theoretical studies of electronic properties of graphene-based system involve to a large extent heavy 

calculations. The incredible progress of computers, high performance computing in particular, has made 

it possible to perform such studies using very accurate quantum mechanical methods.  

 

The size and complexity of molecules, polymers or unit cells of crystals that can be treated with ab initio 

quantum chemistry or VASP methods have increased dramatically. Today we are on a routine base 

performing ab initio calculations of molecules or unit cells with hundreds of atoms and thousands of 

electrons. Such studies deal with ground state properties which forms the basis for the understanding of 

material properties. However, when dealing with properties that are directly related to electronic 

application, properties such as mobility and conductivity, it is considerably more difficult to obtain 

realistic results for large systems. Partially, this is due to the fact that we lack some important information 

concerning the electronic device for example, the exact nature of the contacts or knowledge about defects 

in the material. It is also considerably more difficult to calculate quantities that depends on defects or a 

detailed interactions at constant interfaces.  

 

The work in this thesis is based on calculations ab initio level but also using parametrised Hamiltonian 

of contact and conductance properties. These methods are introduced in chapter 2 below and also 

presented at a more detailed level in the articles.  

 

In all the DFT calculations presented in this thesis in chapter 3 and 4 the Vienna ab initio simulation 

package code VASP [1-3] has been used. It offers periodic boundary conditions on super-cells. This 

package provides both LDA and GGA exchange-correlation energy functional. For the studied molecular 

crystals the PW91 version of the GGA was chosen.  

 

In this thesis, we will investigate four graphene [4-6] based systems:  

1. Single Layer Graphene  

2.Bilayer Graphene  

3.Graphene Nanoribbons  

4.Bilayer Graphene Nanoribbons  

 

For each system, we will discuss the peculiar geometry of each system and calculate their electronic 

dispersion relations and wave functions using the tight binding approximation and the overlap integrals 

calculated by DFT. This is the subject of the present chapter.  

 

The Hamiltonian for all systems considered is calculated using the tight binding approximation [7] which 

is written in second quantized notation and momentum (k) space by  
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H =
kji ,,

 𝑡𝑖𝑗𝑒
𝑖𝒌.𝛿𝑖𝑗𝛼𝑖

† (𝐤)𝛼𝑗 (𝐤) (1) 

Where i and j donote the ith and jth atoms in the unit cell, tij is the overlap integral of the wavefunctions 

of the ith and jth atoms in the unit cell, and 𝛿ij is the vector between those atoms. This is the most general 

form of a tight-binding Hamiltonian, where all the physics of the system is captured by the phase factors 

and overlap integrals. The overlap integrals can be calculated by density functional theory [8], and can 

be confirmed experimentally by numerous methods. The exact value of the coupling constants in 

graphene is by now means a closed topic. Even the most important quantity– the first nearest neighbors 

overlap integral–is not firmly agreed upon.  

 

Nevertheless, only rough values are required for this thesis. Indeed, all overlap integrals shall be 

normalized by the first nearest neighbor overlap integral, and so only the approximate ratio of different 

constants will be required. All values used shall be consistent with the majority of the literature, which 

shall also be the justification for their use.  

 

Usually only the vastly dominant first nearest neighbors are included in the calculations, unless the 

second nearest neighbors are particularly relevant. The value of the first nearest neighbor coupling is 

given by t ≈ 3eV. The second nearest neighbor overlap integral is given by t' ≈ 0.01eV ≈ t/30. The 

interlayer coupling constants for layered systems [9-12] will be introduced below.  

 
Figure 1: Single layer graphene contains two atoms per unit cell, generally denoted by A and B. The first 

nearest neighbour vectors and shown (𝛿𝑖), as well as the lattice vectors (𝑎±). The electronic structure is 

investigated via the tight binding approximation.  

 

2. Single Layer Graphene (SLG)  

Single layer graphene is the basic building block of all the subsystems encountered in this thesis. 

Graphene is a two-dimensional honeycomb lattice of carbon atoms. A slab of single layer graphene is 

shown in figure 3.1. As can be seen in the figure, there are two atoms in the unit cell denoted A and B. 

There are also three nearest neighbour vectors which are  

𝛿1 = (0, b) 

𝛿2 = (
√3𝑏

2
, − 

𝑏

2
)  (2) 

𝛿3 = (−
√3𝑏

2
 , −

𝑏

2
)  

 

Where b = 1.42Å is the first nearest neighbour separation. This will be treated as the intrinsic length scale 

throughout the thesis, and so all lengths will be normalized by it. And the two lattice vectors are given 

by 𝛿1 – 𝛿2 and 𝛿1 – 𝛿3, 

giving  
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𝑎1 =  (−
√3𝑏

2
 ,
3𝑏

2
) (3) 

𝑎2 =  (
√3𝑏

2
 ,
3𝑏

2
). 

 

Using Bloch's theorem and the tight binding approximation one can construct the 2D electronic 

dispersion for single layer graphene. 

 

3. Full Energy Description  

The original formulation of the electronic properties of SLG was calculated by P.R. Wallace in 1947 

[10]. Whilst he didn't have graphene in mind as a material in its own right, Wallace used the single layer 

formulism to determine the electronic properties of bulk 3D graphite. For SLG with non-zero nearest 

neighbour hopping only, the matrix elements are given by  

A〈k|H|k〉B = 
−𝑡

𝑁
 

'',', RRR

(𝑒−𝑖𝒌.(𝑹
′− 𝑹′′(〈𝑹′|𝑹〉 〈𝑹 + 𝛿1| 𝑹′′ 〉 +  〈𝑹

′|𝑹〉 〈𝑹 + 𝛿1 − 𝑎1| 𝑹′′〉 + 〈𝑹
′|𝑹〉 〈𝑹 +

 𝛿1 − 𝑎2|𝑹′′〉)) 

= 
−𝑡

𝑁 
'',', RRR

(𝑒−𝑖𝒌.(𝑹
′− 𝑹′′) (𝛿𝑅′ , 𝑅𝑅+ 𝛿̂1,𝑅′′

𝛿 + 𝛿𝑅′  𝑅𝑅+ 𝛿̂1− 𝑎1,
𝛿 𝑅′′ + 𝛿𝑅′,𝑅𝛿𝑅+ 𝛿̂1− 𝑎2,𝑅′′)(4) 

= 
−𝑡

𝑁
 

R

(𝑒−𝑖𝑘.(− 𝛿̂1) + 𝑒−𝑖𝑘.(− 𝛿̂1− 𝑎1) +  𝑒−𝑖𝑘.(− 𝛿̂1− 𝑎2) )  

= −𝑡𝑒−𝑖𝑘.𝛿̂1 (1+𝑒𝑖𝑘.𝑎+ + 𝑒𝑖𝑘.𝑎− ) 

And  

B〈𝑘| 𝐻|𝑘〉𝐴 = A〈𝑘| 𝐻|𝑘〉𝐵
∗

 (5) 

The overlap of the atomic orbitals of neighboring sites in graphene will be the unit of energy by which 

all other energy values in this thesis will be normalized. The value of t in graphene is agreed to be t ≈ 

3.0eV. The next nearest neighbours can easily be incorporated into the formalism in a similar manner, 

giving a Hamiltonian matrix of  

H = (
𝑡′𝐻11 (𝒌)

𝑡𝐻12 (𝒌)
     
𝑡′𝐻12 (𝒌)

𝑡𝐻11 (𝒌)
) (6) 

Where  

H12(k) = −𝑒𝑖𝒌.𝜹̂1 (1 + 𝑒𝑖𝒌.𝒂+ + 𝑒𝑖𝒌.𝒂−  ) (7) 

And  

H11(k) = √3 − | 𝐻12 (𝒌)|2 (8) 

With t' ≈ t/30. The energy eigenvalues for this system are readily solved as  

ES (k) = t' H11(k) + st|H12(k)|(9) 

Where s = ±1. We will define the special case where next nearest neighbor coupling is neglected (i.e. t' 

= 0) as  

𝜖𝑠 (k) = st|H12(k)|2 =  

st√1 + 4 𝑐𝑜𝑠 (𝑘𝑥 √3𝑏/2)cos(𝑘𝑦/2) + 4 𝑐𝑜𝑠2(𝑘𝑦/2)  (10) 

The wavefunctions are then easily obtained (and are identical for zero and non-zero t'), and given by  

ψ (k) = 
1

√2
 (
𝑠𝑡𝐻12

∗ (𝒌)/𝜖𝑠(𝒌)
1

) (11) 

Which, by de-Moivres theorem, can be expressed as 

ψ (k) = 
1

√2
 (𝑠𝑡𝑒

𝑖𝜙(𝒌)

1
) (12) 

Where 𝜙(k) = tan-1 (ℑH12(k)/ ℜH12(k)). 

 

4. Low Energy Approximation  

The energy dispersion curve is given by  

𝜖𝑠 (k) = st|H12(k)|2 =  



Lal Mohan Mahato et al. [Subject: Zoology] [I.F. 5.991] 

International Journal of Research in Humanities & Soc. Sciences  

    Vol. 13, Sp. Issue 03 July: 2025 

ISSN(P) 2347-5404 ISSN(O)2320 771X 
 

38  Online & Print International, Peer reviewed, Referred & Indexed Monthly Journal      www.raijmr.com 
RET Academy for International Journals of Multidisciplinary Research (RAIJMR) 

 

st√1 + 4 𝑐𝑜𝑠 (𝑘𝑥 √3𝑏/2)cos(𝑘𝑦/2) + 4 𝑐𝑜𝑠2(𝑘𝑦/2)  (13) 

Whose zeroes can be solved by  

𝜖𝑠(k)2 = t2(1 + 4 cos(𝑘𝑥 √3𝑏/2) cos(𝑘𝑦/2)  + 4 𝑐𝑜𝑠
2 (𝑘𝑦/2)) = 0 (14) 

 

There are two inequivalent points that give zero energy, which are usually called the K-points or charge 

neutrality points. They are K, K' = (± 
4 𝜋

3 √3
 , 0). Expanding around one of these points, we obtain a 

greatly simplified Hamiltonian matrix. To do this, we will proceed as follows: near the K-point, the 

momentum is given by K = (𝐾𝑥 + ∆𝑥, ∆𝑦) (since Ky = 0). The Hamiltonian near the K-points then, is 

given by (in terms of the nearest neighbor vectors 𝛿𝑖): 

– H12(k) = 𝑒−𝑖∆𝑦 +  2 𝐶𝑜𝑠 (
√3

2
 (𝐾𝑥 + ∆𝑥))𝑒

𝑖∆𝑦/2 

≈ 1 – 𝑖∆𝑦 + 2 cos (
2𝜋

3
 + 
√3

2
 ∆𝑥) (1 + 𝑖 

∆𝑦

2
)  

= 1 – 𝑖∆𝑦 + 2(1 + 𝑖 
∆𝑦

2
) (– 

1

2
 cos

√3

2
 ∆𝑥) – 

√3

2
 sin (

√3

2
 ∆𝑥)) (15) 

= 1 – 𝑖∆𝑦 + (1 + 𝑖 
∆𝑦

2
) (–1 – 

3

2
 ∆𝑥)  

= 1 – 𝑖∆𝑦 – 1 – 
3

2
∆𝑥 –  𝑖 

1

2
∆𝑦 

= 
3

2
 (∆𝑥 – 𝑖∆𝑦)  

If we define the group velocity to be 𝜐𝐹= 
3𝑡

2
, then we have  

HK = 𝜐𝐹  (
0

𝑘𝑥 + 𝑖𝑘𝑦
     
𝑘𝑥 − 𝑖𝑘𝑦

0
) (16) 

For K sufficiently small and near the K-points. This, in turn, leads to a very simple conical energy 

dispersion  

𝜖𝑘(k) = 𝜐𝐹 |k| (17)  

The velocity 𝜐𝐹 is 𝜐𝐹 ≈ 106 ms-1. The wavefunctions are still given by the full energy form described in 

equation 1.12, but with  

ϕ (k) = tan-1 (ky/kx).(18) 

The two K points are equivalent unless there is coupling between them in which case a phase factor must 

be introduced. However, this will not be relevant for any of our subsequent work.  

 

5. Bilayer Graphene (BLG)  

Bilayer graphene is constructed by stacking two single layers on top of one another such that half the B 

atoms are directly above an A atom as shown in figure 2. This so-called ‘Bernal’ type stacking is the 

most common configuration for multilayer graphene [11,12]. There are three main types of interlayers 

coupling in BLG. The direct vertical A-B coupling, given by 𝛾1 ≈ t/10 ≈ 0.3eV. Because the coupling in 

this case is vertical, there is no induced phase factor in the kx–ky wavefunction. This term causes the two 

single layer subbands to split into two each, giving two valence bands and two conduction bands. The 

second dominant coupling term, 𝛾2 ≈ 0.12eV, couples A–B sites between layers which are not directly 

above and below each other, leading to a phase factor which is associated with this term. This term is 

often called the 'trigonal' term. It causes the single valley K-points of SLG to split into three very small 

valley K-points, thus causing a 'trigonal warping' of the band structure. The third term, 𝛾3 ≈ 0.1eV, 

couples A–A and B–B sites between layers, and also induces a phase factor since the sites are offsect in 

the x–y phane. This term causes a breaking of the x–y isotropy of the system, as will be seen in the 

dispersion curves below.  

 

The Hamiltonian then, including next nearest neighbours (NNN), and the three interlayer coupling terms, 

is given by  
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𝐻𝐵𝐿𝐺  = 

(

 

𝑡′𝐻11
𝑡𝐻12
𝛾3𝐻12

∗

𝛾1

           

𝑡𝐻12
∗

𝑡′𝐻11

𝛾2𝐻12
𝛾3𝐻12

∗

          

𝛾3𝐻12
𝛾2𝐻12

∗

𝑡′𝐻11
𝑡𝐻12

            

𝛾1
𝛾3𝐻12
𝑡𝐻12

∗

𝑡′𝐻11)

   (19) 

The eigenvalues and eigenvectors in the absence of 𝛾3 are readily solved. With 𝛾3 included however, the 

form of the solution is unwieldy. The eigenvalues in the simpler case are given by the (relatively) concise 

form  

𝜖𝜆,𝑘 = t'(𝜖𝑆𝐿
2 −  3) + 𝜆 √𝜖𝑆𝐿

2 + 
𝛾12
+

2
 𝜇√Γ   (20) 

Where  

Γ = 𝜖𝑆𝐿
2  𝛾12

+  + 
(𝛾12
+ )2

4
 + 2 𝛾1𝛾2𝜖𝑆𝐿

2  Re (H12) (21) 

 
Figure 2: The three interlayer terms included in the BLG Hamiltonian, as well as the next nearest 

neighbour coupling term. 𝛾2 and 𝛾3 differ in that they connect, respectively, different and equivalent 

points in the SLG Brillouin Zone. Whilst 𝛾1 and 𝛾2 both represent coupling between different sites in the 

Brillouin zone, 𝛾1 is a directly vertical transition, and so the overlap of the wavefunctions is much larger 

(≈ 3 × larger)   

 

And 𝛾12
±  = 𝛾2

2𝜖𝑆𝐿
2  ± 𝛾1

2, where λ, μ = ±1, 𝜖𝑆𝐿 are the regular eigenvalues for the SLG system, and all 

coupling terms have been normalized by t. Form this result we see that there are two conduction bands 

and two valence bands which are confined above and below the line 𝜖λ,μ – t' (𝜖𝑆𝐿
2 − 3). respectively.  

The low energy part of the electronic dispersion curves are seen in figures 3 and 4. The NNN coupling 

has plunged the extrema below the Fermi energy. The effect of the dominant interlayer term 𝛾1 has caused 

a new pair of bands to emerge which, in this part of the spectrum, are separated from their pairs by an 

amount 𝛾1. The effect of 𝛾2 and 𝛾3 is much more subtle. The trigonal warping can be seen by the K-point 

pair in figure 4, and the 𝛾3 induced loss of isotropy between the two valleys can also be seen. Notice 

however, that the energy range of these effects is ≈ 𝛾2/1000, which is extremely small.  
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Figure 3: The kx dependence of the band structure near the K/K' points with all coupling terms included. 

The two arrows show the approximately constant (at law energies) gap between similar bands.  

 
Figure 4: The kx dependence of the two inner bands near the K/K' points zoomed right in to see the 

effects of 𝛾2 and 𝛾3. The NNN interaction has shifted these features well below the Fermi level. 𝛾2 causes 

the second dirac point to emerge, and 𝛾3 causes one of the two Dirac points to occur at a lower energy.  

 
Figure 5: The two most typical GNRs are q = 0, corresponding to zig-zag ribbons, and q = 1, 

corresponding to armchair ribbons. The elegance of Ezawa's construction is the simplicity of constructing 

infinite ribbons by placing consecutive stacks of hexagon layers on top of each other, offset by q 

hexagons. The zig-zag and armchair edges can be readily seen. These are what determine the unique 

electronic properties of each class of ribbon. The index p essentially determines the width, and does not 

alter the electronic properties as much as q.  
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6. Graphene Nanoribbons (GNRs)  

By cutting strips of single layer graphene, one can construct one dimensional graphene nanoribbons 

(GRRs). The electronic properties of GNRs [11-17] are both width dependent and chirality dependent.  

The construction of a GNR that we will use follows that introduced by Ezawa [18], and can be seen in 

figure 5. A GNR can be described by two indices <p,q>, where q determines the chirality, and p + q is 

the number of hexagons placed side-by-side in the construction (see the figure). When constructed in this 

way, q = 0 defines a Zig-Zag (ZZ) edged GNR, and q = 1 defines and Armchair (AC) edged GNR. The 

chiral angle (θq) is defined as the angle between a zig-zag edge, and the axis direction of the ribbon. From 

this definition, θZZ = 0, and θAC = π/6, and in general θq = tan-1 √3 /2𝑞 + 1).  
The Hamiltonian for a GNR is given by  

HGNR = (
0
𝐻𝐵𝐴

          
𝐻𝐴𝐵
0
)  (22) 

Where the elements of HAB are of from t 𝑒𝑖𝑘𝑏 cos(𝜃𝑞+𝜙𝑖), and HBA = 𝐻𝐴𝐵
∗ . Here 𝜙𝑖 is the chiral angle of the 

unit vector that joins A and B such that  

𝜙𝑖 = π/6 

𝜙2 = 5π/6(23) 

𝜙3 = 3π/2. 

As an example, the Hamiltonian matrix for a <2,1> AC-GNR is  

H<2,1> = (
0

𝐻𝐵𝐴
<2,1>          

𝐻𝐴𝐵
<2,1>

0
)  (24) 

Where  

𝐻𝐵𝐴
<2,1>

=

(

 
 

𝑒𝑖𝑘𝑏√3/2

𝑒−𝑖𝑘𝑏√3/2

0
0
0

    

𝑒𝑖𝑘𝑏

𝑒𝑖𝑘𝑏√3/2

𝑒−𝑖𝑘𝑏√3/2

0
0

   

0
𝑒𝑖𝑘𝑏

𝑒𝑖𝑘𝑏√3/2

𝑒−𝑖𝑘𝑏√3/2

0

   

0
0
0
𝑒𝑖𝑘𝑏

𝑒𝑖𝑘𝑏√3/2

    

0
0
𝑒𝑖𝑘𝑏

𝑒𝑖𝑘𝑏√3/2

𝑒−𝑖𝑘𝑏√3/2)

 
 
 (25) 

And 𝐻𝐵𝐴
<2,1>

 = 𝐻𝐵𝐴
<2,1>∗

. The electronic dispersion curves for this GNR are shown in figure 6(b). Note that 

the linear Dirac-like band structure has re-emerged for this ribbon. One third of AC-GNRs have Dirac 

sub bands, with the condition being p + 1 ∈ 3N where N denotes the integers.  

 

A typical ZZ-GNR band structure is shown in figure 6(a). The low energy band structure is no longer 

linear in this case, and all zig-zag ribbons have a zero-energy gap at the Fermi energy. This zero-gap 

condition is met over an extended region, which implies a very high density of states at the Fermi level. 

By selecting the appropriate width and chirality, a ribbon can be chosen with the desired electronic 

properties. One last example is shown in figure 6(c), which is the band structure of the <3,3> chiral 

ribbon. Note that this too has a low energy Dirac sub band structure. This is not the norm, and there are 

only a handful of cases where this is true for q > 1. 
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Figure 6 (a): A typical zig-zag nanoribbon band structure (p = 2). Note that at the brillouin zone edges 

the energy gap becomes zero. This is the case for all ZZ-GNRs. The linear Dirac dispersion is, however, 

not present, in these structures. (b) A typical armchair nonoribbon band structurer (p = 2). The low energy 

linear Dirac dispersion occurs in armchair ribbons where p + 1 ⊂ N. For all other AC-GNRs, there is a 

small band gap. (c) A 〈3, 3〉 chiral GNR. A small number of GNRs with q > 1 have a linear Dirac-like 

dispersion with no energy gap, but in general this will not be the case, and the bandgaps and curvature of 

the bands will vary dramatically from ribbon to ribbon.  

 
Figure 7 A selection of armchair and zig-zag lgnrs with the two distinct possible stacking orientations. 

These cause different edge sites to couple between layers in slightly different ways, leading to subtle 

changes in the electronic band structure.  
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7. Bilayer Graphene Nanoribbons (BLGNRs)  

When constructing bilayer graphene using the normal 'bernal' type staking, the second is shifted along 

one of the three C-C lattice vectors relative to the first. The choice as to which lattice vector the shift is 

to be made along, in 2D bilayer graphene, is arbitrary, since a simple rotation of the entire system by an 

amount 2π/3 or 4π/3 will obtain the alternative orientations.  

 

When constructing bilayer graphene nanoribbons however, the choice of lattice vector along which to 

shift the second layer alters the electronic properties of the ribbon in various ways. Due to the C3 

symmetry of single layer graphene's hexagonal lattice, there are three equivalent ways to cut out any 

particular chirality ribbon. For example, cutting parallel to any of the three lattice vectors will produce 

an armchair ribbon, and cutting perpendicular to any lattice vector will produce a zig-zag ribbon.  

 

With the second layer of bilayer graphene being shifted along one of the three lattice vectors however, 

this creates, in general, three inequivalent ribbon cuts. The C3 symmetry in this case, has been lost.  

 

In the case of ZZ-and AC-BLGNRs however, due to their particular symmetry, there are only two 

inequivalent ribbons. Consider a second layer shift along 𝛿1 for example as in figure 7. When constructing 

an armchair bilayer ribbon out of this system, if the cut of parallel to 𝛿2, then flipping the system over 

(or viewing it from behind) will transform the ribbon to one cut parallel to 𝛿3. This is due to the 

equivalence of the two layers, meaning which one is the top layer and which one is the lower layer, in 

this case, is arbitrary. Similarly, consider a zig-zag ribbon cut out of the same system. If the cut is made 

perpendicular to 𝛿2, and then the system is flipped (or viewed from behind), it will appear to have been 

cut perpendicular to 𝛿3. 

 

The high symmetry of these particular cases aside however, there are, in general, three inequivalent 

ribbons, of equal chirality, which can be cut out of bilayer graphene.  

Including only the directly vertical interlayer coupling terms, one can determine the tight binding matrix 

elements from the Hamiltonian.  

H = 
lji ,,

𝑡𝑖𝑗𝑐𝑖,𝑙
† 𝐶𝑗,𝑙 + 

ji,

𝛾𝑖𝑗𝑐𝑖,𝑙1
† 𝐶𝑗,𝑙2   (26) 

Where i and j denote the lattice sites on layer 𝑙1 or 𝑙2, ti,j = t = 3.0eV is the regular intralyar nearest 

neighbor overlap matrix if i and j are nearest neighbors, and zero otherwise, and 𝛾𝑖𝑗 = 𝛾 = 0.13eV is the 

regular dominant interlayer term for bilayer graphene if i on 𝑙1 is directly above j on 𝑙2, and zero 

otherwise.  

Returning to the case of the 〈2, 1〉 ribbon, the Hamiltonian matrix is  

𝐻(2,1)
𝐵𝐿𝐺𝑁𝑅 = (

𝐻(2,1)
𝐺𝑁𝑅

𝐻𝑖𝑛𝑡𝑒𝑟
𝑆

         
𝐻𝑖𝑛𝑡𝑒𝑟
𝑆

𝐻(2,1)
𝐺𝑁𝑅  ) (27) 

Where S denotes the shift type : (V)ertical, (R)ight, or (L)eft. The vertical and left shift interlayer coupling 

matrices are equivalent in the armchair case, and are given by  

  𝐻𝑖𝑛𝑡𝑒𝑟
𝑉/𝐿

 = (
0
ℎ𝑉/𝐿
𝑇          ℎ𝑉/𝐿

0
 ) (28)  
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Figure 8: The band structurers for the high symmetry bilayer ribbons (q = 0,1)m with p = 2. In general, 

when going from a single to a bilayer ribbon, each single layer sub band becomes a sub band pair which 

are separated from each other by some amount determined by the interlayer edge state coupling. Note in 

particular the key differences depending on stacking orientation are at the K and Γ points.  

Where  

ℎ𝑅= 

(

 
 

𝛾
0
0
0
0

          

0
𝛾
0
0
0

       

0
0
𝛾
0
0

       

0
0
0
0
𝛾

        

0
0
0
𝛾
0)

 
 

  (29) 

Is the right shift interlayer coupling matrix, and the vertical/left shift interlayer coupling matrix is given 

by  

hv/L = 

(

 
 

0
0
0
0
0

          

𝛾
0
0
0
0

       

0
𝛾
0
0
0

       

0
0
𝛾
0
0

        

0
0
0
0
𝛾)

 
 

 (30) 

The two inequivalent shifts of the second graphene layer in armchair nanoribbons are parallel to the axis 

direction, and at an angle of π/3 to the axis direction. The former leads to complete coupling of potentially 

vertical sites. This unique situation in armchair ribbons causes the band structure to two simple sets of 

curves with the simple form  

ϵi
BLGNR = ±iγ + ϵSLGNR  (31) 

 

Where i = [0, 1]. This means that the bilayer armchair GNR with a parallel shift of the second layer has 

a set of curves equal of the single layer armchair ribbon, and a set of curves equal to the single layer 

ribbon but γ larger in magnitude. 

 

The second type of bilayer armchair ribbon has some uncoupled sites in the unit cell which effects the 

bandgaps, making them, in general < γ, and not constant. Of particular interest are the low energy parts 

which are no longer two linear bands but instead curved as in 2D bilayer graphene, and at the usually 

degenerate points at |ϵ| = t, the points are no longer degenerate but a finite gap has emerged.  

 

ZZ-BLGNRs are constructed the same way, except that the right and left shifts are equivalent in this case. 

The two inequivalent shifts of the second graphene layer in zig-zag nanoribbons are perpendicular to the 

axis direction, and at an angle of π/6 to the axis direction. The former leads to an entire overhanging edge 

on each layer which is not coupled to the other. This in turn leads to a larger deviation from the single 

layer electronic dispersion. The latter causes less sites to be uncoupled between layers, and so a less 

drastic shift form for the regular zig-zagribbon dispersion.  
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These single to bilayer and stacking dependent properties of the electronic dispersions of armchair and 

zig-zag bilayer nanoribbons can be seen in figure 8. When extending the system to three or more layers, 

the electronic properties evolve in the same way, and there are many distinct stacking orientations, as the 

different permutations and not, in general, equivalent.  

 

However, we will not be particularly interested in these various stacking orientations in general. The 

results obtained for the vertical shift contains all the significant physics for this thesis, and from now on, 

it will be assumed that all BLGNRs are vertically shifted ones. 

 

8. Conclusion  

We can see from these results that the electronic properties of graphene-based materials vary significantly 

depending on dimensionality, layering and chirality. We see that single layer graphene is a zero-gap 

semiconductor. It stands in stark contrast to normal metals which exhibit diffusive electron transport and 

temperature dependent resistivity. The prediction and observation of a minimum dc conductivity and a 

universal ac conductivity stand as testament to these unique properties. In fact, graphene seems to be 

increasingly referred to as a super fluid rather than any kind of 'normal' electronic system. This seems 

sensible, as localization in suppressed, and so graphene is not highly correlated. It behaves more like a 

dilute gas in this respect. The Klein effect [19] makes the transport of Dirac Fermions [20] extremely 

robust to disorder, aiding the dissipation less transport expected of superfluids [21-24]. Band structure 

effects play the key role in all of these phenomena. Graphene is truly a unique material [4-6] with such 

varied properties that categorization into any conventional nomenclature is fruitless.  

 

The derivation of the low energy Dirac Hamiltonian for single layer graphene has been nothing short of 

a phenomenon in condensed matter physics in the last few years. The Fermi energy in intrinsic graphene 

happens to lie precisely on the bands-touching points. This is a very interesting feature of graphene as it 

means that at the Fermi energy there is a vanishing density of states, and no bandgap. It is worth 

mentioning that the low energy bilayer Hamiltonian, whose form has not been considered as it is not 

relevant to this thesis, can essentially be described by the Dirac Hamiltonian with a mass term [6]. 

 

The chirality of graphene nanoribbons in particular promises some very exciting potential building blocks 

for electronic device implementation due to their chirality dependent band gaps. In particular, one can 

imagine that two ribbons, one armchair with zero-bandgap, and one chiral with a small finite band gap, 

can by joined together by simply cutting along one direction, then cutting along the other. And so 

semiconductor-metal junctions [25-27] can possibly be formed by simply cutting graphene along 

different directions. The holy grail in this context would be electronic device [28-37] production on the 

smallest scale ever achieved, by simply stamping out patterned graphene into networks of various 

chirality graphene nanoribons.  

 

The main characteristic energies of layered graphene materials in particular lie within the terahetz to far 

infrared regime. The second nearest neighbour intralayer coupling, as well as all three major interlayer 

couplings are all within this region of the spectrum. Because of this, it is not unreasonable to expect that 

grapheme will be quite active within this region.  
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