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1. Introduction

Theoretical studies of electronic properties of graphene-based system involve to a large extent heavy
calculations. The incredible progress of computers, high performance computing in particular, has made
it possible to perform such studies using very accurate quantum mechanical methods.

The size and complexity of molecules, polymers or unit cells of crystals that can be treated with ab initio
quantum chemistry or VASP methods have increased dramatically. Today we are on a routine base
performing ab initio calculations of molecules or unit cells with hundreds of atoms and thousands of
electrons. Such studies deal with ground state properties which forms the basis for the understanding of
material properties. However, when dealing with properties that are directly related to electronic
application, properties such as mobility and conductivity, it is considerably more difficult to obtain
realistic results for large systems. Partially, this is due to the fact that we lack some important information
concerning the electronic device for example, the exact nature of the contacts or knowledge about defects
in the material. It is also considerably more difficult to calculate quantities that depends on defects or a
detailed interactions at constant interfaces.

The work in this thesis is based on calculations ab initio level but also using parametrised Hamiltonian
of contact and conductance properties. These methods are introduced in chapter 2 below and also
presented at a more detailed level in the articles.

In all the DFT calculations presented in this thesis in chapter 3 and 4 the Vienna ab initio simulation
package code VASP [1-3] has been used. It offers periodic boundary conditions on super-cells. This
package provides both LDA and GGA exchange-correlation energy functional. For the studied molecular
crystals the PW91 version of the GGA was chosen.

In this thesis, we will investigate four graphene [4-6] based systems:
1. Single Layer Graphene

2.Bilayer Graphene

3.Graphene Nanoribbons

4.Bilayer Graphene Nanoribbons

For each system, we will discuss the peculiar geometry of each system and calculate their electronic
dispersion relations and wave functions using the tight binding approximation and the overlap integrals

calculated by DFT. This is the subject of the present chapter.

The Hamiltonian for all systems considered is calculated using the tight binding approximation [7] which
is written in second quantized notation and momentum (k) space by
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H=Y" tje*dial (a; (k) (1)
i,j,k

Where i and j donote the i’ and j atoms in the unit cell, #; is the overlap integral of the wavefunctions
of the i and j” atoms in the unit cell, and & is the vector between those atoms. This is the most general
form of a tight-binding Hamiltonian, where all the physics of the system is captured by the phase factors
and overlap integrals. The overlap integrals can be calculated by density functional theory [8], and can
be confirmed experimentally by numerous methods. The exact value of the coupling constants in
graphene is by now means a closed topic. Even the most important quantity— the first nearest neighbors
overlap integral—is not firmly agreed upon.

Nevertheless, only rough values are required for this thesis. Indeed, all overlap integrals shall be
normalized by the first nearest neighbor overlap integral, and so only the approximate ratio of different
constants will be required. All values used shall be consistent with the majority of the literature, which
shall also be the justification for their use.

Usually only the vastly dominant first nearest neighbors are included in the calculations, unless the
second nearest neighbors are particularly relevant. The value of the first nearest neighbor coupling is
given by t = 3eV. The second nearest neighbor overlap integral is given by t' = 0.01eV = t/30. The
interlayer coupling constants for layered systems [9-12] will be introduced below.

Figure 1: Single layer graphene contains two atoms per unit cell, generally denoted by A and B. The first
nearest neighbour vectors and shown (§;), as well as the lattice vectors (a4.). The electronic structure is
investigated via the tight binding approximation.

2. Single Layer Graphene (SLG)

Single layer graphene is the basic building block of all the subsystems encountered in this thesis.
Graphene is a two-dimensional honeycomb lattice of carbon atoms. A slab of single layer graphene is
shown in figure 3.1. As can be seen in the figure, there are two atoms in the unit cell denoted A and B.
There are also three nearest neighbour vectors which are

5, =(0,b)

(9o

(2.

Where b = 1.42A is the first nearest neighbour separation. This will be treated as the intrinsic length scale
throughout the thesis, and so all lengths will be normalized by it. And the two lattice vectors are given
by 8, — &, and &; — &,

giving
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Using Bloch's theorem and the tight binding approximation one can construct the 2D electronic
dispersion for single layer graphene.

3. Full Energy Description

The original formulation of the electronic properties of SLG was calculated by P.R. Wallace in 1947

[10]. Whilst he didn't have graphene in mind as a material in its own right, Wallace used the single layer

formulism to determine the electronic properties of bulk 3D graphite. For SLG with non-zero nearest

neighbour hopping only, the matrix elements are given by

aklHKg == (e *®=F"(R'|R)(R+ 8,|R")+ (R'|R)(R+ 8, — a;| R") + (R'|R) (R +
R,R"R"

6 a’z “E”))) I
—ik. R'-R" -|— Ia” 6 é + — R
" ( ‘ ( ) (SR" R+ 5 R” 6R’ RR+ 6 R’:R R (S] az, ”)( )

B(k| H|k)a = alk| H|k)p (5)
The overlap of the atomic orbitals of neighboring sites in graphene will be the unit of energy by which
all other energy values in this thesis will be normalized. The value of t in graphene is agreed to be t =
3.0eV. The next nearest neighbours can easily be incorporated into the formalism in a similar manner,
giving a Hamiltonian matrix of

t'Hy; (k) t'Hyp (k)
H= ( 11 ) 6

tHyy () tHyy (k) )
Where
Hin(k) = —eikd (1 + etkar 4 gika-1) (7)
And
Hu(k) =3 =T Hy, (OF (8)
With t' = t/30. The energy eigenvalues for this system are readily solved as
Es (k) = t' Hi1(k) + st/H12(k)|(9)
Where s = +1. We will define the special case where next nearest neighbor coupling is neglected (i.e. t'
=0) as
€5 (K) = stiHia(K)|* =
stJl + 4 cos (k, \/§b/2)cos(ky/2) + 4 cos?(k,/2) (10)
The wavefunctions are then easily obtained (and are identical for zero and non-zero t'), and given by

L (stHyp(k)/es(k)
v (1= (SIS
Which, by de-Moivres theorem, can be expressed as
1 ip (k)
vi9=3 (") (12

Where ¢(k) = tan™' (SHi2(k)/ RH12(K)).

4. Low Energy Approximation
The energy dispersion curve is given by
€5 (k) = stHia(k)|? =
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st J 1+ 4 cos (k. V3b/2)cos(ky/2) + 4 cos?(ky/2) (13)

Whose zeroes can be solved by
es(k)> = t2(1 + 4 cos(k, V3b/2) cos(ky /2) + 4 cos? (k,/2)) = 0(14)

There are two inequivalent points that give zero energy, which are usually called the K-points or charge
41

3v3’
greatly simplified Hamiltonian matrix. To do this, we will proceed as follows: near the K-point, the
momentum is given by K = (K, + A,,A,) (since K, = 0). The Hamiltonian near the K-points then, is

neutrality points. They are K, K' = (-i_- 0). Expanding around one of these points, we obtain a

given by (in terms of the nearest neighbor vectors §;):
—Hi(k)=e % + 2 Cos (g (K, + Ay))ey/?
~1-id, +2cos Z+2A) (1+i )

. A 1 3 V3 . 43
=1—iA, +2(1 +i 7}') (=3 c0s== Ay) — == sin (- Ay)) (15)

, . A 3
=1-iA, +(1 +3L 7}')(—11—5Ax)

:i—l'Ay—l—EAx— i EAy
= E (Ax — lAy)
If we define the group velocity to be vp= %, then we have

0 .
Hg=vg (kx ¥ ik, ky Olk)/) (16)

For K sufficiently small and near the K-points. This, in turn, leads to a very simple conical energy
dispersion

€ (k) = vplk| (17)

The velocity vy is vr = 10° ms™'. The wavefunctions are still given by the full energy form described in
equation 1.12, but with

¢ (k) = tan™! (ky/ky).(18)

The two K points are equivalent unless there is coupling between them in which case a phase factor must
be introduced. However, this will not be relevant for any of our subsequent work.

S. Bilayer Graphene (BLG)

Bilayer graphene is constructed by stacking two single layers on top of one another such that half the B
atoms are directly above an A atom as shown in figure 2. This so-called ‘Bernal’ type stacking is the
most common configuration for multilayer graphene [11,12]. There are three main types of interlayers
coupling in BLG. The direct vertical A-B coupling, given by y; = t/10 = 0.3eV. Because the coupling in
this case is vertical, there is no induced phase factor in the ki—k, wavefunction. This term causes the two
single layer subbands to split into two each, giving two valence bands and two conduction bands. The
second dominant coupling term, y, = 0.12eV, couples A—B sites between layers which are not directly
above and below each other, leading to a phase factor which is associated with this term. This term is
often called the 'trigonal' term. It causes the single valley K-points of SLG to split into three very small
valley K-points, thus causing a 'trigonal warping' of the band structure. The third term, y3 = 0.1eV,
couples A-A4 and BB sites between layers, and also induces a phase factor since the sites are offsect in
the x— phane. This term causes a breaking of the x—y isotropy of the system, as will be seen in the
dispersion curves below.

The Hamiltonian then, including next nearest neighbours (NNN), and the three interlayer coupling terms,
is given by
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The eigenvalues and eigenvectors in the absence of y; are readily solved. With y5 included however, the
form of the solution is unwieldy. The eigenvalues in the simpler case are given by the (relatively) concise
form

"
ek =15, — 3)+2 \/ESZ‘L + % T (20)
Where

_ 2 o+, ()3 2
=¢€5, 712+ . 2 y1v2€5, Re (Hi2) (21)

OA i. zz
o: x,/ % [y, |y( )
;1 3

x (AC)

Figure 2: The three interlayer terms included in the BLG Hamiltonian, as well as the next nearest
neighbour coupling term. ¥, and y5 differ in that they connect, respectively, different and equivalent
points in the SLG Brillouin Zone. Whilst y; and y, both represent coupling between different sites in the
Brillouin zone, y; is a directly vertical transition, and so the overlap of the wavefunctions is much larger
(= 3 x larger)

And v = y3€Z + yZ, where A, p = %1, €, are the regular eigenvalues for the SLG system, and all
coupling terms have been normalized by ¢. Form this result we see that there are two conduction bands
and two valence bands which are confined above and below the line €, , — ¢’ (€2, — 3). respectively.
The low energy part of the electronic dispersion curves are seen in figures 3 and 4. The NNN coupling
has plunged the extrema below the Fermi energy. The effect of the dominant interlayer term y, has caused
a new pair of bands to emerge which, in this part of the spectrum, are separated from their pairs by an
amount y;. The effect of y, and y5 is much more subtle. The trigonal warping can be seen by the K-point
pair in figure 4, and the y; induced loss of isotropy between the two valleys can also be seen. Notice
however, that the energy range of these effects is =~ y,/1000, which is extremely small.
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Figure 3: The £ dependence of the band structure near the K/K' points with all coupling terms included.
The two arrows show the approximately constant (at law energies) gap between similar bands.
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Figure 4: The k. dependence of the two inner bands near the K/K' points zoomed right in to see the
effects of y, and y5;. The NNN interaction has shifted these features well below the Fermi level. y, causes
the second dirac point to emerge, and y3 causes one of the two Dirac points to occur at a lower energy.
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Figure 5: The two most typical GNRs are q = 0, corresponding to zig-zag ribbons, and ¢ = 1,
corresponding to armchair ribbons. The elegance of Ezawa's construction is the simplicity of constructing
infinite ribbons by placing consecutive stacks of hexagon layers on top of each other, offset by ¢
hexagons. The zig-zag and armchair edges can be readily seen. These are what determine the unique
electronic properties of each class of ribbon. The index p essentially determines the width, and does not
alter the electronic properties as much as q.
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6. Graphene Nanoribbons (GNRs)

By cutting strips of single layer graphene, one can construct one dimensional graphene nanoribbons
(GRRs). The electronic properties of GNRs [11-17] are both width dependent and chirality dependent.
The construction of a GNR that we will use follows that introduced by Ezawa [18], and can be seen in
figure 5. A GNR can be described by two indices <p,q>, where g determines the chirality, and p + ¢ is
the number of hexagons placed side-by-side in the construction (see the figure). When constructed in this
way, g = 0 defines a Zig-Zag (ZZ) edged GNR, and ¢ = 1 defines and Armchair (AC) edged GNR. The
chiral angle (6,) is defined as the angle between a zig-zag edge, and the axis direction of the ribbon. From
this definition, 7= 0, and 4c= /6, and in general 6, =tan™ /3 /2q + 1).

The Hamiltonian for a GNR is given by

Hong = < H(;A HSB) (22)

Where the elements of Hp are of from ¢ e*? €°5®a+90 and Hy, = H}. Here ¢; is the chiral angle of the
unit vector that joins A and B such that

¢i =7/6
¢, = 51/6(23)
¢)3 =37/2.
As an example, the Hamiltonian matrix for a <2,1> AC-GNR is
Heppo = ( 0 HEP‘Z'D) 24
<2,1> HB<j,1> 0 ( )
Where
o ikbV3/2 etkb 0 0 0
_ikbV3j2  pikbV3/2  eikP 0 0
Hy2>= 0 e —ikbV3/2 eikbV3/2 0 etkb (25)
0 0 e-ikbV3/2  etkb o ikbV3/2
0 0 0 eikbV3/2  ,—ikby3/2

And H ;j’b =H ;j’b*. The electronic dispersion curves for this GNR are shown in figure 6(b). Note that
the linear Dirac-like band structure has re-emerged for this ribbon. One third of AC-GNRs have Dirac
sub bands, with the condition being p + 1 € 3N where N denotes the integers.

A typical ZZ-GNR band structure is shown in figure 6(a). The low energy band structure is no longer
linear in this case, and all zig-zag ribbons have a zero-energy gap at the Fermi energy. This zero-gap
condition is met over an extended region, which implies a very high density of states at the Fermi level.
By selecting the appropriate width and chirality, a ribbon can be chosen with the desired electronic
properties. One last example is shown in figure 6(c), which is the band structure of the <3,3> chiral
ribbon. Note that this too has a low energy Dirac sub band structure. This is not the norm, and there are
only a handful of cases where this is true for q > 1.
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Figure 6 (a): A typical zig-zag nanoribbon band structure (p = 2). Note that at the brillouin zone edges
the energy gap becomes zero. This is the case for all ZZ-GNRs. The linear Dirac dispersion is, however,
not present, in these structures. (b) A typical armchair nonoribbon band structurer (p =2). The low energy
linear Dirac dispersion occurs in armchair ribbons where p + 1 © N. For all other AC-GNRs, there is a
small band gap. (c) A (3, 3) chiral GNR. A small number of GNRs with ¢ > 1 have a linear Dirac-like

dispersion with no energy gap, but in general this will not be the case, and the bandgaps and curvature of
the bands will vary dramatically from ribbon to ribbon.
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Figure 7 A selection of armchair and zig-zag Ignrs with the two distinct possible stacking orientations.
These cause different edge sites to couple between layers in slightly different ways, leading to subtle
changes in the electronic band structure.
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7. Bilayer Graphene Nanoribbons (BLGNRs)

When constructing bilayer graphene using the normal 'bernal' type staking, the second is shifted along
one of the three C-C lattice vectors relative to the first. The choice as to which lattice vector the shift is
to be made along, in 2D bilayer graphene, is arbitrary, since a simple rotation of the entire system by an
amount 27/3 or 4n/3 will obtain the alternative orientations.

When constructing bilayer graphene nanoribbons however, the choice of lattice vector along which to
shift the second layer alters the electronic properties of the ribbon in various ways. Due to the C3
symmetry of single layer graphene's hexagonal lattice, there are three equivalent ways to cut out any
particular chirality ribbon. For example, cutting parallel to any of the three lattice vectors will produce
an armchair ribbon, and cutting perpendicular to any lattice vector will produce a zig-zag ribbon.

With the second layer of bilayer graphene being shifted along one of the three lattice vectors however,
this creates, in general, three inequivalent ribbon cuts. The C3 symmetry in this case, has been lost.

In the case of ZZ-and AC-BLGNRs however, due to their particular symmetry, there are only two
inequivalent ribbons. Consider a second layer shift along 8, for example as in figure 7. When constructing
an armchair bilayer ribbon out of this system, if the cut of parallel to §,, then flipping the system over
(or viewing it from behind) will transform the ribbon to one cut parallel to 5. This is due to the
equivalence of the two layers, meaning which one is the top layer and which one is the lower layer, in
this case, is arbitrary. Similarly, consider a zig-zag ribbon cut out of the same system. If the cut is made
perpendicular to §,, and then the system is flipped (or viewed from behind), it will appear to have been
cut perpendicular to 5.

The high symmetry of these particular cases aside however, there are, in general, three inequivalent
ribbons, of equal chirality, which can be cut out of bilayer graphene.
Including only the directly vertical interlayer coupling terms, one can determine the tight binding matrix
elements from the Hamiltonian.
H=3" tyc G+ > vijel, G, (26)
i,j,l i,j
Where i and j denote the lattice sites on layer l; or l,, #;; = ¢ = 3.0eV is the regular intralyar nearest
neighbor overlap matrix if i and j are nearest neighbors, and zero otherwise, and y;; =y = 0.13eV is the
regular dominant interlayer term for bilayer graphene if i on [; is directly above j on [,, and zero
otherwise.
Returning to the case of the (2, 1) ribbon, the Hamiltonian matrix is
HGNR HS
ngg (o0 ) en
‘ Hinter H(Zzl)
Where S denotes the shift type : (V)ertical, (R)ignt, or (L)est. The vertical and left shift interlayer coupling
matrices are equivalent in the armchair case, and are given by

0
V/L h
Hinter - (hg/L B/L ) (28)
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Figure 8: The band structurers for the high symmetry bilayer ribbons (¢ = 0,1)m with p = 2. In general,
when going from a single to a bilayer ribbon, each single layer sub band becomes a sub band pair which
are separated from each other by some amount determined by the interlayer edge state coupling. Note in
particular the key differences depending on stacking orientation are at the K and I" points.

Where
Y 0 0 0 0
( 0 y 0 O 0\
hg=]| 0 0o vy 0 0]@29
\0 0 0 0 y
0 0 0o v 0

Is the right shift interlayer coupling matrix, and the vertical/left shift interlayer coupling matrix is given
by

0 Yy 0 0 0

0 0O y o0 O
hyi=10 0 o y 0/[@30

0 0 0 o0 0

0 0 0 o )4

The two inequivalent shifts of the second graphene layer in armchair nanoribbons are parallel to the axis
direction, and at an angle of n/3 to the axis direction. The former leads to complete coupling of potentially
vertical sites. This unique situation in armchair ribbons causes the band structure to two simple sets of
curves with the simple form
E}SLGNR — :i:i’)) + ESLGNR (31)

Where i = [0, 1]. This means that the bilayer armchair GNR with a parallel shift of the second layer has
a set of curves equal of the single layer armchair ribbon, and a set of curves equal to the single layer
ribbon but y larger in magnitude.

The second type of bilayer armchair ribbon has some uncoupled sites in the unit cell which effects the
bandgaps, making them, in general <y, and not constant. Of particular interest are the low energy parts
which are no longer two linear bands but instead curved as in 2D bilayer graphene, and at the usually
degenerate points at |€| =t, the points are no longer degenerate but a finite gap has emerged.

ZZ-BLGNRs are constructed the same way, except that the right and left shifts are equivalent in this case.
The two inequivalent shifts of the second graphene layer in zig-zag nanoribbons are perpendicular to the
axis direction, and at an angle of /6 to the axis direction. The former leads to an entire overhanging edge
on each layer which is not coupled to the other. This in turn leads to a larger deviation from the single
layer electronic dispersion. The latter causes less sites to be uncoupled between layers, and so a less
drastic shift form for the regular zig-zagribbon dispersion.
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These single to bilayer and stacking dependent properties of the electronic dispersions of armchair and
zig-zag bilayer nanoribbons can be seen in figure 8. When extending the system to three or more layers,
the electronic properties evolve in the same way, and there are many distinct stacking orientations, as the
different permutations and not, in general, equivalent.

However, we will not be particularly interested in these various stacking orientations in general. The
results obtained for the vertical shift contains all the significant physics for this thesis, and from now on,
it will be assumed that all BLGNRs are vertically shifted ones.

8. Conclusion

We can see from these results that the electronic properties of graphene-based materials vary significantly
depending on dimensionality, layering and chirality. We see that single layer graphene is a zero-gap
semiconductor. It stands in stark contrast to normal metals which exhibit diffusive electron transport and
temperature dependent resistivity. The prediction and observation of a minimum dc conductivity and a
universal ac conductivity stand as testament to these unique properties. In fact, graphene seems to be
increasingly referred to as a super fluid rather than any kind of 'normal' electronic system. This seems
sensible, as localization in suppressed, and so graphene is not highly correlated. It behaves more like a
dilute gas in this respect. The Klein effect [19] makes the transport of Dirac Fermions [20] extremely
robust to disorder, aiding the dissipation less transport expected of superfluids [21-24]. Band structure
effects play the key role in all of these phenomena. Graphene is truly a unique material [4-6] with such
varied properties that categorization into any conventional nomenclature is fruitless.

The derivation of the low energy Dirac Hamiltonian for single layer graphene has been nothing short of
a phenomenon in condensed matter physics in the last few years. The Fermi energy in intrinsic graphene
happens to lie precisely on the bands-touching points. This is a very interesting feature of graphene as it
means that at the Fermi energy there is a vanishing density of states, and no bandgap. It is worth
mentioning that the low energy bilayer Hamiltonian, whose form has not been considered as it is not
relevant to this thesis, can essentially be described by the Dirac Hamiltonian with a mass term [6].

The chirality of graphene nanoribbons in particular promises some very exciting potential building blocks
for electronic device implementation due to their chirality dependent band gaps. In particular, one can
imagine that two ribbons, one armchair with zero-bandgap, and one chiral with a small finite band gap,
can by joined together by simply cutting along one direction, then cutting along the other. And so
semiconductor-metal junctions [25-27] can possibly be formed by simply cutting graphene along
different directions. The holy grail in this context would be electronic device [28-37] production on the
smallest scale ever achieved, by simply stamping out patterned graphene into networks of various
chirality graphene nanoribons.

The main characteristic energies of layered graphene materials in particular lie within the terahetz to far
infrared regime. The second nearest neighbour intralayer coupling, as well as all three major interlayer
couplings are all within this region of the spectrum. Because of this, it is not unreasonable to expect that
grapheme will be quite active within this region.
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