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1. Introduction 

To calculate many of the physical properties of a material exactly, many body problems are faced. The 

forces acting between the particles are electromagnetic. On the microscopic level the description of 

matter is provided by the quantum mechanics laws. The equation that governs the particles is the Dirac 

equation [1,2], which solutions are many-body spin wave functions. It incorporates relativistic effects 

and predicts the intrinsic spin angular momentum of the particles. In the non-relativistic limit, the Dirac 

equation reduces to the Schrodinger equation [3]. The spin prediction and description are lost and has to 

be reintroduced by the following separate postulate. In a region of space where several identical particles 

may be found simultaneously, it is impossible to distinguish between them. If the particles also are 

fermions, for example electrons and protons, only one particle can occupy a given individual quantum 

state. This requires that the total wave function must be antisymmetric under interchange of the space 

and spin coordinates of two identical fermions. This is known as the Pauli exclusion principle [4]. The 

existence of spin, which is intimately connected with relativity, is however fully compatible with the 

description of the system in terms of the Schrodinger equation.  

 

2. Relaxation of the Nuclear Configuration  

Dealing with time-dependent system is in general a delicate task. The exact solutions of the time-

dependent Schrodinger equation are usually impossible to find, though there are systems that can be 

solved approximately. If the Hamiltonian varies very slowly with time, the adiabatic theorem is 

applicable. It assumes that the instant (time-independent) solution, a non-degenerate discrete state and its 

energy, evolves to the corresponding state and energy at a later time without making any transition. If the 

adiabatic approximation is applied to molecules the slow time dependence of the Hamiltonian 

corresponds to the motion of the nuclei relative to the electrons. The charged particles are moving in the 

Coulomb potential of each other, but the nuclei are considerable heavier than the electrons so their speed 

is much lower. Therefore, the electrons manage to relax at any instant nuclear configuration and the 

Schrodinger equation becomes separable into an electronic and a nuclear part. For each nuclear 

configuration the electronic ground state is given by the time-independent electronic Schrodinger 

equation. In the nuclear part of the Schrodinger equation the electronic ground state energy appears as a 

potential energy. According to the Hellmann-Feynman theorem [5,6] gradient of this potential energy is 

interpreted as a generalized force that vanish is the equilibrium configuration. This is the essence of the 

Bohr-Oppenheimer approximation [7]. 

 

3. Electronic Structure Methods  

The electronic structure is determined by the Hamiltonian in the time-independent Schrodinger equation. 

The Hamiltonian consists of an external coulomb potential, the kinetic energy operators and particle-

particle coulomb interactions. Within the Born-Oppenheimer approximation, the nucleus-nucleus 
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interaction appears as energy parameters and the electron-nucleus interaction is treated as an external 

potential. It is the remaining electron-electron interaction that defines a many-body problem.  

 

4. Non-Interacting Electrons  

Ignoring in electron-electron interaction, the separation of variables technique makes the Schrodinger 

equation exactly solvable. The eigenfunctions, called Hartree products, are thus products of occupied 

one-electron wave functions. From their classical counterpart these single particle wave functions are 

named spatial orbitals. They are infinite to the number and can be chosen to form an orthonormal [8] set. 

Each orbital is associated with an energy eigenvalue and the total energy is simply the sum of the 

occupied orbital energies. At the non-relativistic level of theory, spin-orbitals ϕi(ri, σj) are formed as 

products of a spin function and a spatial orbital. To fulfil the Pauli exclusion principle for fermions, which 

the Hartree product does not, these singly occupied spin-orbitals have to be arranged in, what is known 

as a Slater determinant, in order to get an anti-symmetric wave function.  

Φ = √
1

N!
 |

ϕ1(r1, σ1) ϕ1(r2, σ2) . . . . ϕ1(rN, σN)
ϕ2(r2, σ2) ϕ2(r2, σ2) . . . . ϕ2(rN, σN)

⋮                                ⋮                                  ⋮     
ϕN(rN, σN)ϕN (rN, σN). . . .  ϕN(rN, σN)

| (2.1) 

A Slater determinant is usually referred to as an uncorrelated wave function with function with respect 

to the motion of the electrons. Nevertheless, even the Pauli exclusion principle introduces correlation. 

Although, the Slater determinant only is an exact solution of a fictitious system it plays an important role 

in most of the more accurate methods for electronic structure calculations.  

 

When the coulomb electron-electron interaction is added, numerical methods have to be applied. For 

many purposes it is sufficient to find the ground state solution. A powerful and straight forward method 

for doing this, is based on the variational principle. It is applied to the energy functional for the 

expectation value of the Hamiltonian H with a trial wave function ϕ.     

E [ϕ] = <ϕ|H |ϕ>  (2.2) 

 

The wave function that minimizes the expectation value is the exact ground state solution and the ground 

state energy is the minima. This is the main concept for both Hartree-Fock [9] based methods and the 

density-functional theory [10] (DFT). In the DFT this energy functional is rewritten is terms of the 

electron density, which plays the central role rather than the many-body wave function. Though these 

two approaches are different they both end up with effective one electron Schrodinger equations, the 

Hartree-Fock equations and Kohn-Sham equations, respectively. However, the interpretation of the 

solution differs.  

 

5. The Hartree-Fock Method  

This is a variational method finding an upper limit to ground state energy using a Slater determinant with 

spin-orbitals as trial wave function. The inherent approximation comes from the restrictions on the total 

wave function resulting from a description-based Slater-determinant. By minimizing the total energy 

with respect to the spin orbitals a system of coupled equations, the Hartree-Fock equations are found. 

They are pseudo-eigenvalue equations with an effective one-electron operator, the Fock operator, that 

depends on all the occupied orbitals. Apart from the kinetic energy operator and the external potential, it 

is composed of the coulomb and exchange operators. Both of them origin from the expectation value of 

the Coulomb electron-electron interaction for a Slater determinant. Considering the probability density 

of occupied spin-orbitals as charge density, the Coulomb part represents the classical Coulomb repulsion. 

There is no classical analogy for the exchange part that arises from the anti-symmetry of the Slater 

determinant. The deficient description of correlated electronic motions in the Slater determinant leads to 

a situation in which that each electron influenced by the average positions of the other electrons. The 

effect of these other electrons can be expressed as a potential, named the Hartree-Fock potential (that 

depends on the electron density). Due to this mutual dependence of the orbital solutions, the Hartree-
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Fock equations have to be solved self-consistently. Consequently, the Hartree-Fock method is often 

referred to as a self-consistent field method.  

 

6. Density-Functional Theory  

In this theory the basic entity is the particle position probability density n(r), often called particle density. 

If the normalized N-particle wave function is known the particle density is given by  

n(r) = 
N ...1

. . . . ∫ N|Ψ (r1 σ1, . . ... rN, σN)|2 dr2 . . . drN       (2.3) 

The major advantage of considering the particle density instead of the many particle wave functions is 

that the number of needed space coordinates is reduced to three, independently of the number of particles.  

For a classical continuous charge distribution n(r) the electrostatic energy is given by a density functional 

EH [n] usually called the Hartree energy in quantum mechanical contexts.  

EH[n] = ∫ 
1

2
 ∫ 

n (𝐫′)

|𝐫−𝐫′|
 dr' n(r) dr (2.4) 

The potential energy for a classical and quantum mechanical charge density n(r) in an external potential 

Vext(r) is also given by a simple density functional 

Eext[n] = ∫ Vext(r) n(r) dr. (2.5) 

 

7. The Thomas-Fermi-Dirac Approximation  

The idea of using the electron density in electronic structure calculations were initiated by Thomas [11] 

and Fermi [12] in 1927. They introduced a local functional of the electron density TLDA[n] as an 

approximation of kinetic energy.  

TLDA [n] = ∫ 
3

10
 (3π2 n(r))2/3 n(r) dr (2.6) 

It is referred to as a local density approximation (LDA), since it assumes that the density locally can be 

considered as an homogeneous electron gas. Using the Hartree energy as an approximation for the 

electron-electron repulsion, an approximate total energy functional was obtained as a sum of the kinetic, 

Hartree and external potential energy functional. 

E[n] = TLDA [n] + EH [n] + Eext [n](2.7) 

 

An estimation of the ground state energy and the corresponding density is found by minimizing the total 

energy functional with the respect to the electron density, under the constraint that the number of particles 

is conserved.  

N = ∫ n(r) dr (2.8) 

 

The variational principle in the form of the method of Lagrange multipliers results in an Euler-Lagrange 

equation that gives the density that minimizes the total energy with the Lagrange multiplier as the 

chemical potential.  

 

Thomas and Femi neglected correlation between electrons and what is called exchange integration n the 

Hartree-Fock method. When the expectation value of the Hamiltonian is calculated with a Slater-

determinant, as it is in Hartree-Fock method, the correlated motion of the electrons the lower the total 

energy is missed. Therefore, both the kinetic and the electron repulsion energies only become 

approximations. Due to the anti-symmetric nature of the Slater determinant the expectation value of the 

electron repulsion consists of two terms. The first one is identified as the electrostatic potential of a 

classical continuous charge distribution, the Hartree energy. It includes the spurious self-interaction 

energies, that are negligible if the number of particles in the density is large, but are considerable with 

only a few particles present. These energies cancelled by the second term, the exchange energy. Besides 

that, this term is needed due to the Pauli exclusion principle. Therefore, a few years later Dirac added a 

LDA functional Ex
LDA [n] for the exchange energy [2]. 

Ex
LDA [n] = ∫ – 

3

4
 (

3n (𝐫)

π
)

1/3
 n(r) dr (2.9)  
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These LDA functional for the kinetic and exchange energies are only exact for an non-interacting 

homogeneous electron gas. Furthermore, this local density functional for the exchange energy does not 

completely cancel the self-interaction in the Hartree-energy. However, in the Thomas-Fermi-Dirac 

approximation no neutral molecules are stable [13-15], which considerable reduces its applicability.  

 

8. The Hohenberg-Kohn Theorems 

In 1964 two important theorems concerning the electron density were presented and proofed by 

Hohenberg and Kohn [16]. It turns the approximate density-functional theory for the electronic ground 

state, developed by Thomas, Fermi and others, into an exact theory for interacting many-body systems, 

based on the density. The first theorem states that the ground state particle density n0(𝐫) for system of 

interacting particles uniquely determines the external potential Vext(r) except for an additive constant. No 

restrictions to coulomb potentials are needed. Since the Hamiltonian is completely determined by the 

external potential, also the many-body wave functions for all states are determined. Hence, the ground 

state density n0(𝐫)completely determines all properties of the system. A consequence of this theorem is 

that there exist functionals of the density, though unknown and probably complex, for every observable 

quantity of such systems. This theorem also shows that assumptions in the Thomas-Fermi approximation, 

that the kinetic and electron-electron interaction can be described as density functionals, is in fact no 

approximation. Denoting these quantities T[n] and Eee [n] the exact total energy is given by  

E [n] = T [n] + Eee [n] + Eext [n] (2.10) 

 

The second theorem states that the exact total energy E(n) is always larger than or equal to the ground 

state energy for a V-representable trial density n(r). It is analogous to the energy variational principle for 

the wave functions used in Hartee-Fock method and justifies the use of this principle in the Thomas-

Fermi approximations. The functional E(n) alone is sufficient to determine the ground state density and 

energy, exactly. If a density can be obtained from an anti-symmetric wave function, it is N-representable, 

while a V-representable density has to be N- representable and correspond to a density of a non-

degenerate ground state in some external potential. However, there exist reasonable densities that are not 

V-representable. Levy and Lieb solved this dilemma with their constraint search formulation [17-19] in 

DFT, in which the density only has to satisfy the weaker condition of N-representability. The solution is 

to minimise the kinetic and electron-electron repulsion energies with respect to the wave function for 

each density first and then minimise the total energy with respect to the density.  

E[n] =  min
Ψ→n

 <  Ψ|T̂ + V̂ee |Ψ > + Eext [n] (2.11) 

 

With this two-step minimization procedure, the density only needs to be N-representable and the 

degenerate ground states can be handled by DFT. Mermin [20] has extended the theory to cover finite 

temperature canonical and grand canonical ensembles. His work shows that the free-energy functional of 

the density directly determines thermal equilibrium properties such as specific heat.  

 

9. The Kohn-Sham Ansatz  

Kohn and Sham's idea was to map the interacting electronic system to an auxiliary system of non-

interacting electrons with the same ground state electron density n0(r) [21]. For this auxiliary system the 

total energy functional is composed of the kinetic energy of non-interacting particles Ts [n] and an 

effective potential energy functional Eeff[n] including all potential and particle interaction energies,  

E [n] = Ts [n] + Eeff[n](2.12) 

 

According to the Hartree-Fock and Thomas-Fermi-Dirac approximations the major electron-electron 

interaction energies are the Hartree and exchange energies, while the excluded remainder is the 

correlation energy. In the density-functional approach, only the functional of the Hartree energy is known 

explicitly. Kohn and Sham introduced a successful approximation of a combined exchange and 

correlation energy functional, that is very accurate for a homogeneous electron gas. Due to its local 

functional nature, it is called the local density approximation of the exchange-correlation energy Exe
LDA[n]. 
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Eeff [n] = EH[n] + Exe[n] + Eext[n](2.13) 

The major error in the Thomas-Fermi-Dirac approximation comes from the local density approximation 

of the kinetic energy. Therefore, the most ingenious proposal of Kohn and Sham was the kinetic energy 

functional 

Ts [n] = min
Φ→n

  < Φ|T̂|Φ > (2.14) 

 

Where Φ is a Slater determinant, which is sufficient to describe the exact wave function of the non-

interacting electrons. For a given electron density, the Slater determinant orbitals that minimize the 

kinetic energy are the so-called Kohn-Sham orbitals.  

 

If the variational principle is applied to the total energy functional with the Kohn-Sham kinetic energy, a 

set of one-electron Schrodinger-like equations is obtained. These are the Kohn-Sham equations with the 

effective potential Veff (r) that is the variation of the potential energy functional with respect to the 

density.  

Veff (r) = 
δ Eeff [n]

δn
 = ∫  

n (𝐫′)

|𝐫−𝐫′|
 dr' + 

δ Exe [n]

δn
 + Vext (r) (2.15) 

Due to the density dependence in the effective potential, these Kohn-Sham equations have to be solved 

self-consistently.  

 

10. Exchange-Correlation Functional  

The major drawback of DFT is that a general exact exchange correlation functional is obviously not 

known. There is not even a systematic way to improve approximations. Kohn and Sham themselves 

proposed the first and so far the most used approximation, the local density approximation of the 

exchange-correlation functional Exe
LDA [n] [21]. The idea behind it is that it is exact for a homogeneous 

electron gas and should be valid for other systems with a density slowly varying over the space. 

  

Consider a homogeneous interacting electron gas, completely specified by its constant density n. The 

exact exchange energy is possible to derive, while an accurate correlation energy can be calculated 

numerically. A function of the density ϵxe
hom [n] is obtainably for the exchange-correlation energy per 

electron. Using this function for an homogeneous electron n(r) at each point r gives an approximation of 

the exchange-correlation energy according to:  

Exe
LDA[n] = ∫ ϵxe

hom(n (𝐫)) n(r) dr.  (2.16) 

 

The LDA has proved to be strikingly accurate in many electronic structure calculations in solid state 

physics. However, the use of LDA in quantum chemistry, dealing with molecules of even individual 

atoms that have densities with large gradients, has been limited. A functional with a gradient expansion 

approximation (GEA) were already proposed in the original paper of Kohn and Sham. These early 

attempts did not lead to consistent improvement over the LDA. The breakthrough came with generalized 

gradient approximation (GGA) that provides accuracy needed for molecular systems. Three widely used 

parametrizations of the functional are Becke [22], Perdew, Becke and Nederlof [23] Perdew and Wang 

[24-26].  

Exe
GGA[n] = ∫ϵxe

GGA [n (r), |∇n (r)|] dr.  (2.17)  

Both the functions ϵxe
homand ϵxe

GGA are parametrized analytic functions to facilitate numerical calculations.  

 

11. Spin-Density Functionals  

So far only spin unparsed densities have been considered, where the spin-up and spin-down densities are 

equal, n↑(r) = n↓(r) = n(r)/2. Even without magnetic fields, spin density functionals are needed to cope 

with unpaired electrons in atoms and decuples. Such functionals for spin polarized densities have thus 

been derived.  
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Both for the exact and the local density approximations of the kinetic and exchange energy functionals, 

the spin-scale relation (F [2n↑]  +  F [2n↓])/2 works, while the Hartree energy functional is simply 

E [n↑,n↓]= EH[n↑ + n↓].The spin-scaling for correlation energy is not known, but the spin-scaling of the 

dominant exchange energy is used to construct the spin-polarized exchange-correlation energy 

functionals.  

Exe
LDA[n↑,n↓] = ∫ ϵxe

hom (n↑ (𝐫), n↓(𝐫)) n(r) dr     (2.18) 

Exe
GGA [n↑,n↓]= ∫ ϵxe

GGA (n↑(𝐫), n↓(𝐫)|| ∇n↑(𝐫)|, |∇n↓(𝐫)|) n(r) dr(2.19) 

 

12. The Vienna Ab-initio Simulation Package  

In all the DFT calculations presented in this thesis the Vienna ab-initio simulation package code VASP 

[27-29] has been used. It offers periodic boundary conditions on supper cells. This package provides both 

LDA and GGA exchange correlation energy functionals. For the studied molecular crystals, the PW91 

version of the GGA was chosen. The electronic valence wave functions were expanded in a plane-wave 

basis set, while the core states were described by frozen atomic wave functions. Only plane waves with 

a kinetic energy smaller than a chosen cut off energy were included in the basics set. In conjunction with 

the frozen core approximation, the Blochl's projector augmented-wave (PAW) method [30,31] was used 

to reduce the size of the basis set. The first Brillouin zone (BZ) was sampled with the Monkhorst–Pack 

[32] method, which subdivides the zone along the reciprocal lattice vectors. To reduce the number of 

points needed in BZ to get an accurate band-structure energy, partial occupancies for each wave function 

was used according to the Methfessel-Paxton smearing method. In this method the Fermi-Dirac step 

function is expanded in a complete orthonormal set of functions, where the first function in the expansion 

is the Gaussian function. Electronic relaxations were performed with a preconditioned conjugate-gradient 

(CG) method [33], the Davidson blocked iteration scheme [34], or preconditioned residual minimisation 

method-direct inversion in the iterative subspace (RMMDIIS) [35]. For the ionic relaxations both a 

preconditioned CG algorithm or a RMM-DIIS algorithm were employed, depending on the starting guess 

of the ionic structure. If the ionic structure was unreasonable the more reliable CG algorithm was used, 

while closer to a local minimum the RMM-DIIS algorithm usually was more efficient. 

  

13. The Tight- Binding and the Huckel Approximation  

The tight-binding method was developed by the Block [36] in 1928. This was probably the first theory 

of electrons in crystals. In his ansatz to solve the Schrodinger equation for crystals, he considered the 

crystal potential as a sun of atomic potentials plus a small perturbation term ∆V including all corrections 

to the atomic potentials. Without the perturbation, the exact solutions are the degenerated atomic energy 

eigenvalues ϵn
(0)

and a sum of the localized atomic wave functions. Using the atomic orbitals as an 

approximation of the atomic wave functions, the unperturbed crystal wave function can be written as a 

linear combination of atomic orbitals φi
(0)

(r) (Bloch himself only used a spherical symmetric function at 

each atom). The perturbation theory for degenerate energy levels gives the following generalized matrix 

eigenvalue equation for each energy eigenvalue  

(∆V– ϵn
(1)

) c = 0(2.20) 

where the matrix elements are   

(∆V)i,j = < φi |∆V |φj> (2.21) 

(S)i,j = < φi |φj >(2.22) 

Thus the energy eigenvalues up to the first order energy corrections and the corresponding wave 

functions, the are Bloch functions, are given by  

ϵn  = ϵn
(0)

 + ϵn
(1)

 (2.23) 

Φn = 
i

Ci φi
(0)

 (2.24) 

The matrix element (ΔV)i,i , (ΔV)i,j≠i and (S)i,j are called Coulomb integrals, resonance integrals, and 

overlap integrals, respectively. In one element crystals the Coulomb integrals are equal, so Bloch 

introduced the parameter α for the their value. Due to the localized nature of the atomic orbitals, the 



Lal Mohan Mahato et al. [Subject: Physics] [I.F. 5.91] International 

Journal of Research in Humanities & Soc. Sciences  

    Vol. 12, Issue 11, November: 2024 

ISSN(P) 2347-5404 ISSN(O)2320 771X 
 

22  Online  International, Peer reviewed, Referred & Indexed Monthly Journal                    www.raijmr.com 
RET Academy for International Journals of Multidisciplinary Research (RAIJMR) 

 
 
 
 
 
 
 
 

values of the overlap integrals and the resonance integrals for nearest neighbours and next nearest 

neighbours (and more distant neighbours), respectively are small and neglected. Bloch also introduced 

the parameter β for the nearest neighbour resonance integrals and considered each atomic orbital to be 

normalised to unity. Depending on the crystal symmetry a few different β might be needed. For 

parametrisation of resonance integrals in crystals or molecules with varying inter-atomic distances the 

Mullikin approximation [37] is applicable. It estimates the resonance integral from the overlap integral 

βi,j = k(S)i,j , where the parameter k has to be determined empirically.  

 

Three years after Bloch introduced the tight binding approximation. Huckel [38] applied this method on 

hydrocarbon molecules. He used the method for describing the π electrons of the carbon atoms. This 

early variant of Bloch's tight binding method has been known as the Huckel theory. Later Hoffman [39] 

generalised this approximation for the hydrocarbons to include all the atomic orbitals, and named it the 

extended Huckel theory.  
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