
Usikamalla Srikanth et al. / International Journal of Research in
Modern Engineering and Emerging Technology

 Vol. 3, Issue: 3, April - May : 2015
 (IJRMEET) ISSN: 2320-6586

24 Online International, Reviewed & Indexed Monthly Journal www.raijmr.com
RET Academy for International Journals of Multidisciplinary Research (RAIJMR)

Load Rebalancing for Distributed File Systems in Clouds

USIKAMALLA SRIKANTH
Department of Computer Science & Engineering, (M.Tech.)

Sindura College of Engineering and Technology

Ramagundam,Telangana

G.LAKSHMI
Asst. Professor,

Department of Computer Science & Engineering (M. Tech.)

Sindura College of Engineering and Technology

Ramagundam,Telangana

K.GEETA
Head of the Department of Computer Science & Engineering (M. Tech.)

Sindura College of Engineering and Technology

Ramagundam,Telangana

Abstract:

In distributed systems protecting the data is become more vulnerable and has to provide the secure to

the digital applications. A novel load-balancing algorithm to deal with the load rebalancing problem

in large-scale, dynamic, and distributed file systems in clouds. Distributed file systems are key

building blocks for cloud computing applications based on the Map Reduce programming paradigm.

In such file systems, nodes simultaneously serve computing and storage functions. Files can also be

dynamically created, deleted, and appended. This results in load imbalance in a distributed file

system; that is, the file chunks are not distributed as uniformly as possible among the nodes.

Additionally.

Keywords: Measurement, Security. Denial of service

1. Introduction

96% of common people used to think that cloud is the best place to store and retrieve the values

virtually, and 62% of business entrepreneurs used to think that cloud is the best place to store the

content but the case about security from hackers. To make use of these resources we need search

mechanisms that distill the information relevant to each user. Normally, such mechanisms require the

user to provide a server with a query such as a textual keyword that the server will compare against the

documents in some large data set. This model becomes problematic for applications in which the user

would like to hide the search criteria. A user might want to protect the privacy of his search queries for

a variety of reasons, including protection of commercial interests and personal privacy. Such privacy

issues were brought into the spotlight in 2005 when the U.S. Department of Jus- tice subpoenaed

records of search terms from popular web search engines. In the current era of digital world, different

organizations produce a large amount of sensitive data including personal information, electronic

health records, and financial data. The amount of digital data increases at a staggering rate; doubling

almost every year and a half [1]. This data needs to be widely distributed and stored for a long time

due to operational purposes and regulatory compliance. The local management of such huge amount of

data is problematic and costly. While there is an observable drop in the cost of storage hardware, the

management of storage has become more complex and represents approximately 75% of the total

ownership cost [1]. SaaS offered by CSPs is an emerging solution to mitigate the burden of large local

data storage and reduce the maintenance cost via the concept of outsourcing data storage

Usikamalla Srikanth et al. / International Journal of Research in
Modern Engineering and Emerging Technology

 Vol. 3, Issue: 3, April - May : 2015
 (IJRMEET) ISSN: 2320-6586

25 Online International, Reviewed & Indexed Monthly Journal www.raijmr.com
RET Academy for International Journals of Multidisciplinary Research (RAIJMR)

In such a distributed file system, the load of a node is typically proportional to the number of file

chunks the node possesses [3]. Because the files in a cloud can be arbitrarily created, deleted, and

appended, and nodes can be up- graded, replaced and added in the file system [7], the file chunks are

not distributed as uniformly as possible among the nodes. Load balance among storage nodes is a

critical function in clouds.

2. Workflows

A workflow is a depiction of a sequence of operations, declared as work of a person, work of a simple

or complex mechanism, work of a group of persons, work of an organization of staff, or machines.

Workflow may be seen as any abstraction of real work, segregated in work share, work split or

whatever types of ordering. For control purposes, workflow may be a view on real work under a

chosen aspect, thus serving as a virtual representation of actual work. The flow being described often

refers to a document that is being transferred from one step to another .

3. Related Works

By leveraging DHTs, we present a load rebalancing algorithm for distributing file chunks as uniformly

as possible and minimizing the movement cost as much as possible. Particularly, our proposed

algorithm operates in a distributed manner in which nodes perform their load-balancing tasks

independently without synchronization or global knowledge regarding the system.

Many systems have provided restricted programming models and used the restrictions to parallelize

the computation automatically. For example, an associative function can be computed over all of an N

element array in log N time on N processors using parallel pre x computations [6, 9, 13]. Map Reduce

can be considered a implication and distillation of some of these models based on our experience with

large real-world computations. More signi cantly, we provide a fault-tolerant implementation that

scales to thousands of processors. In contrast, most of the parallel processing systems have only been

implemented on smaller scales and leave the details of handling machine failures to the programmer.

4. Proposed System

The chunk servers self-configure and self-heal in our proposal because of their arrivals, departures,

and failures, simplifying the system provisioning and management. Specifically, typical DHTs

guarantee that if a node leaves, then its locally hosted chunks are reliably migrated to its successor; if a

node joins, then it allocates the chunks whose IDs immediately precede the joining node from its

successor to manage. Our proposal heavily depends on the node arrival and departure operations to

migrate file chunks among nodes. Interested readers are referred to [10], [11] for the details of the self-

management technique in DHTs.

. The DHT network is transparent to the metadata management in our proposal. While the DHT net-

work specifies the locations of chunks, our proposal can be integrated with existing large-scale

distributed file systems, e.g., Google GFS [2] and Hadoop HDFS [3], in which a centralized master

node manages the namespace of the file system and the mapping of file chunks to storage nodes.

Specifically, to incorporate our proposal with the master node in GFS, each chunk server periodically

piggybacks its locally hosted chunks’ information to the master in a heartbeat message [2] so that the

master can gather the locations of chunks in the system.

This eliminates the dependence on central nodes. The storage nodes are structured as a network based

on distributed hash tables. DHTs enable nodes to self-organize and repair while constantly offering

lookup functionality in node dynamism, simplifying the system provision and management. Our

algorithm is compared against a centralized approach in a production system and a competing

distributed solution presented in the literature. The simulation results indicate that although each node

performs our load rebalancing algorithm independently without acquiring global knowledge.

Usikamalla Srikanth et al. / International Journal of Research in
Modern Engineering and Emerging Technology

 Vol. 3, Issue: 3, April - May : 2015
 (IJRMEET) ISSN: 2320-6586

26 Online International, Reviewed & Indexed Monthly Journal www.raijmr.com
RET Academy for International Journals of Multidisciplinary Research (RAIJMR)

Fig. 1: The message overhead

results indicate that centralized matching introduces much less message overhead than distributed

matching and our proposal, as each node in centralized matching simply informs the centralized load

balancer of its load and capacity. On the contrary, in distributed matching and our proposal, each node

probes a number of existing nodes in the system, and may then reallocate its load from/to the probed

nodes, introducing more messages. We also see that our proposal clearly produces less message

overhead than distributed computing. Specifically, any node i in our proposal gathers partial system

knowledge from its neighbors [26], [27], whereas node i in distributed matching takes messages to

probe a randomly selected node in the network.

Both distributed matching [14] and our proposal depend on the Chord DHT network in the

simulations. However, nodes may leave and rejoin the DHT network for load rebalancing, thus

increasing the overhead required to maintain the DHT structure. Thus, we further investigate the

number of rejoining operations. Note that centralized matching introduces no rejoining overhead be-

cause nodes in centralized matching does not need to self-organize and self-heal for rejoining

operations. Fig. 1 illustrates the simulation result

5. Architecture

 Main Server

 Sub server

 File upload and Download Centralized System

In the experimental environment, a number of clients are established to issue requests to the name

node. The requests include commands to create directories with randomly designated names, to

remove directories arbitrarily chosen, etc. Due to the scarce resources in our environment, we have

deployed 4 clients to generate requests to the name- node. However, this cannot overload the name

node to mimic the situation as reported data center networks proposed recently (e.g., [29]) can offer a

fully bisection bandwidth, the total number of chunks scattered in the file system in our experiments is

limited to 256 such that the network bandwidth in our environment

Usikamalla Srikanth et al. / International Journal of Research in
Modern Engineering and Emerging Technology

 Vol. 3, Issue: 3, April - May : 2015
 (IJRMEET) ISSN: 2320-6586

27 Online International, Reviewed & Indexed Monthly Journal www.raijmr.com
RET Academy for International Journals of Multidisciplinary Research (RAIJMR)

6. Conclusions

The Map Reduce programming model has been success- fully used at Google for many different

purposes. We attribute this success to several reasons. First, the model is easy to use, even for

programmers without experience with parallel and distributed systems, since it hides the details of

parallelization, fault-tolerance, locality optimization, and load balancing. Second, a large variety of

problems are easily expressible as Map Reduce computations. For example, Map Reduce is used for

the generation of data for Google's production web search ser- vice, for sorting, for data mining, for

machine learning, and many other systems. Third, we have developed an implementation of Map

Reduce that scales to large clusters of machines comprising thousands of machines. The

implementation makes client use of these machine re- sources and therefore is suitable for use on

many of the large computational problems encountered at Google.

References

1. H. Abu-Libdeh, P. Costa, A. Rowstron, G.O’Shea, and A. Donnelly, “Symbiotic Routing in

Future Data Centers,” Proc. ACM SIGCOMM ’10, pp. 51-62, Aug. 2010.

2. J.W. Byers, J. Considine, and M. Mitzenmacher, “Simple Load Balancing Distributed Hash

Tables,” Proc. First Int’l Workshop Peer-to-Peer Systems (IPTPS ’03), pp. 80-87, Feb2003

3. John R. Douceur, the sybil attack, international workshop on peer-to- peer systems, 2002.

4. K. McKusick and S. Quinlan, “GFS: Evolution on Fast-Forward,” Comm. ACM, vol.53, no3, pp.

42-49, Jan. 2010.

5. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load Balancing in Structured P2P

Systems,” Proc. Second Int’l Workshop Peer-to-Peer Systems (IPTPS ’02), pp. 68-79,

Feb.2003

