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Abstract: 

Fault tolerance is an important issue in service-oriented architectures like Grid and Cloud systems, 

where many and heterogeneous machines are used.  Fault Tolerance is a non-functional 

requirement that requires a system to continue to operate, even in the presence of faults.In this 

work we present a flexible fault tolerant which extends the service –oriented architecture for 

Distributed Data Mining services on Grid for all the machines (primaries and replica), in order to 

have each machine both serving client requests and acting as backup for the other machines. 

Where as in previously a mechanism for handling machine failures in a Grid environment is 

proposed. By this the users can achieve failure recovery whenever a crash can occur on a Grid 

node involved in the computation. 
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1. Introduction 

Grid computing differs from conventional distributed computing because it focuses on large-scale 

resource shar-ing, offering innovative applications, and, in some cases, it is geared toward high-

performance systems Grid is a basic infrastructure of national high performance computing and 

information service, it targets on the integration and interconnection of many kinds of high 

performance computers, data servers, large-scale storage systems and visualize systems which are 

physical distributed and heterogeneous. The driving Grid applications are traditional high-

performance applications, such as high-energy particle physics, astronomy and environmental 

modeling, in which experimental devices create large quantities of data that require scientific 

analysis. For these reasons, Grids must offer effective support to the implementation and use of 

data mining and knowledge discovery systems.  To achieve such a goal, several distributed data 

mining systems exploiting the Grid infrastructure has been designed a performed by the services 

on the worker nodes. A resource is associated to each service: the GlobalModel Resource to 

the GlobalMiner-WS and the LocalModel Resource to the LocalMiner-WS. Such resources 

are used to store the state of the services, in this case represented by the computed models 

(globally and locally, respectively). The services development can be done by using the Java 

WSRF library provided by the WS-Core, a component of the Globus Toolkit 4 .and 

implemented [14], [12], [8], [2]. In a previous work [4] we present a flexible failure handling 
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frame-work which extends that proposed in [3], addressing the requirements for fault tolerance in 

the Grid. The framework allows users to achieve failure recovery whenever a crash can occur on a 

Grid node involved in the computation.  

 

In computer science applications, a general problem to take into account is machine failure due to 

faults in some component, such as a processor, memory, device, cable, or software. A fault is a 

malfunction, possibly caused by a design error, a manufacturing error, a programming error, 

physical damage, deterioration in the course of time, and many other causes. Not all faults lead 

(immediately) to system failures, but they can do. In particular, this aspect becomes relevant in a 

scenario, like the Grid, where many and heterogenous machines are involved. Developing, de-

ploying, and running applications on a environment poses significant challenges due to the diverse 

failures and error conditions encountered during execution. As observed in [10], although the mean 

time to failure of any entity in a computational Grid is high, the large number of entities in a Grid 

(hardware, network, software, grid middleware, core services, etc.) means that a Grid can fail 

frequently. For example, in [13], the authors studied the failure data from several high performance 

computing systems operated by Los Alamos National Laboratory (LANL) over nine years. 

Although failure rates per processor varied from 0.1 to 3 failures per processor per year, systems 

with 4096 processors averaged as many as 3 failures per day. Thus, although the number of failures 

per processor is relatively low, the aggregate reliability of a system clearly deteriorates as the 

number of processors is increased. So, the reliability of a computational Grid is a real problem to 

deal with. 

 

In this work we present a flexible fault tolerant which extends the service –oriented architecture for 

Distributed Data Mining services on Grid for all the machines (primaries and replica), in order to 

have each machine both serving client requests and acting as backup for the other machines In the 

following we describe all the steps composing the whole process. Let us suppose that a client 

wants to execute a distributed mining algorithm on a dataset D, which is partitioned in N 

partitions, {D1, ..., DN}, each one stored on one of the nodes {Node1, ..., NodeN}. A 

request to the framework of performing a mining process can be labeled in three different main 

phases, each one composed of various steps, as described in the following. 

 

The rest of the paper is organized as follows. Section II describes the original framework that 

supports no fault tolerant functionalities. Section III describes a fault tolerant framework for 

distributed data mining, as extension of that proposed in [4]. Section IV gives some concluding 

remarks. 

 

2. Background: A Service Oriented Architecture for Distributed Data Mining On The Grid 

Typically in Distributed Data Mining (DDM) data sets are stored in local databases or file 

systems, hosted by local computers/repositories, which are connected through a computer 

network. One of the most common DDM approaches includes the analysis of the local data 

sets at each site, inferring local models or statistics. Then, the locally discovered knowledge 

is usually transmitted to a merger (or central) site, where the integration/refinement of the 

distributed local models is performed. Such two steps can be re-executed, until a convergence 

condition has been reached. Examples of solutions adhering to this design pattern fall in 

various categories, i.e. clustering ([3], [8]), classification ([7]), association rule and frequent 

item sets mining ([7]), ensemble learning ([11]), collective data mining ([8]) and meta-

learning ([9]). In order to provide a service oriented architecture for the execution of distributed 

data mining algorithms on the Grid, in [2] we have designed the Grid service architectural model 

shown in Figure 1. It is composed of two Grid Services: the GlobalMiner-WS and the 

LocalMiner-WS. 
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The overall architecture resembles the aforementioned DDM schema through an entity acting as 

coordinator (the GlobalMiner-WS) ) and a certain number of entities acting as miners 

(LocalMiner-WS) on local sites. Thus, it is a master/worker architecture, in which the service 

on the master node arranges the operations performed by the services on the worker nodes. A 

resource is associated to each service: the GlobalModel Resource to the GlobalMiner-WS and 

the LocalModel Resource to the LocalMiner-WS. Such resources are used to store the state 

of the services, in this case represented by the computed models (globally and locally, 

respectively). The services development has been done by using the Java WSRF library 

provided by the WS-Core, a component of the Globus Toolkit 4 . 

 

In the following we describe all the steps composing the whole process. Let us suppose that a 

client wants to execute a distributed mining algorithm on a dataset D, which is partitioned 

in N partitions, {D1, ..., DN}, each one stored on one of the nodes {Node1, ..., NodeN}. A 

request to the framework of performing a mining process can be labeled in three different main 

phases, each one composed of various steps, as described in the following. 

 

From the following Fig.: 1 we can see that how a job can be submitted and executed. First the client 

submits the job to the Global Miner-WS and immediately the Global Miner-WS searches for an 

appropriate resource (Global Model Resource) for storage of the job. Then the Global Model takes 

the help of Local Miner-WS for the execution of the job and for finding out the faults in the 

machine. Finally the Global Model Resource submits the job to the Local Miner-WS. Once if the 

 
Fig. 1. General Grid Service Architecture for a machine 

 

Job is submitted to the Local Miner-WS then the Global Model Resource it has no control over the 

job processes. Now the Local Miner-WS starts the required process of the job. After execution of 

the job. The results of the executed job are stored in the Local Model Resource, when once the 

results are collected then the Local Model Resource submits the job results to the Global Model 

Resource. At last finally the Global Model Resource will subm it the job results to the client. 

 

2.1 Proposed Architecture 

In the proposed architecture[Gridbus [6], it is composed of two Grid Services : the Grid Service 

Broker and the Grid Service Provider.This architecture is similar to the Grid Service Architecture. 

To the proposed architecture we use the Peer-To-Peer Computing mechanism for an efficient 
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exploitation of all the machines (primaries and replica), in order to have each machine both serving 

as client requests and acting as backup for the other machines. 

 

 
 

Fig. 2.  Proposed architecture of P2P computing 

From the Fig.:2 we can see the proposed architecture, how it process. The client submits the job to 

the Grid Service Broker and then the Grid resource broker performs resource discovery based on 

user-defined characteristics, using the Grid information service(step 1). The broker identifies the 

list of data sources or replicas and selects the optimal ones(step 2) .  The broker ensures that the 

user has the necessary credit or authorized share to utilise resources(step 3) . The broker scheduler 

maps and deploys data analysis jobs on resources that meet user quality-of-service 

requirements(step 4) . The broker agent on a resource executes the job and returns results(step 5) . 

The broker collects the results and passes them to the user(step 6). 

 

 
 

Fig. 3. Proposed Architecture 

2.2 Unreliability Aspects 

The system described in the Section II-A presents no strategy to tolerate faults. In particular, 

crashes can occur both on the Grid Service Broker and on the Grid Service Provider, so there are 

two points where the fault tolerance has to be handled. The first service acts both as the coordinator 

of the system and as collector of the results delivered by the local services; for such a reason, any 

failure occurring on it stops the whole computation. The second services, acting as workers in the 

architecture, execute local computations. Since the global model can be built only if all the local 

models are delivered, any crash on a local site (and consequently no deliver of its local model to the 

central site) prevents the Grid Service Broker to build a global model. In the rest of the paper we 

address such issues and propose a solution to deal with them. 
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2.2.1 To overcome these two reasons or faults 

Many fault-tolerance systems have been proposed in literature. Most of them exploit the two well-

known classical Primary-Backup and Active-Replication approaches. In the following, we will give 

a brief description of such two techniques. Then, we will cite some systems devoted at handling 

fault tolerance in Grids 

 

The Primary-backup method is based on a primary server and a given number of backup servers. 

The essential idea is that, at any instant, only the primary is running and does all the work. If the 

primary fails, a cut over from the primary to the backup is handled by a suitable protocol (that in 

most cases does not involve the client). At this point, the backup acts as new primary (and new 

backup should be activated). 

 

Active replication, sometimes referred as state machine approach, is a well-known technique for 

providing fault tolerance using physical redundancy. The strategy is based on independent 

replicated server (replicas). The client sends the invocation to all the replicas, which execute the 

computation and send the responses. In other words, the computation is made by more servers are 

executing exactly the same work and are able to finalize the computation and reply to the client. 

3. A Fault-Tolerant Framework 

This section presents the extension of the framework described in the Section II with the goal of 

making it fault-tolerant. As cited in the Section II-B, we deal with two-level fault tolerant 

strategies: the first one applied to the Grid Service Broker level, the second one to the Grid Service 

Provider level. 

 

3.1 Fault tolerance on the Grid Service Broker 

The fault-tolerance on the Grid Service Broker has been designed by adopting and implementing 

the general primary-backup strategy. The proposed fault-tolerant framework supposes the presence 

of a set of Grid Service Broker replica, whose just one is the primary at any time. The others are 

named backups. The primary-backup strategy [7] contemplates the following general steps: 

1. The client sends the invocation to the Grid Service Broker.  

2. The primary receives the invocation and asks for local computations; as soon as such 

computation results are returned and the Global Model has been re-computed, the primary 

sends a model-update message to the backups. The primary sends a model-update message to 

the backups. 

3. If the primary crashes during step 2, a new primary is elected among the replicas, and it 

becomes the new primary of the system, taking care of the computation.  

4. Once the primary has received a reply of the state update (step 2) from all backups, the 

response is sent to the client.  

 

Three delicate phases, as in any implementation of a primary-backup mechanism [3], should be 

analyzed in detail: 

• Checkpointing or transfer of application state. The primary periodically needs to send the 

change in the Global Model (its state) to the backups; it basically consists of storing a snapshot 

of the current application state. In particular, the consistency has to be guaranteed among the 

backup states, i.e., the primary can continue its work (or reply to the client) only when it is 

known that the backups have applied the state change.  

• Failure detection. Crashes of the primary node can be detected by a periodic message, i.e. 

heartbeat that is sent to the backup; if no messages are sent for a given time, then this can be an 

indication of a failure on the primary node.  
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• Recovery phase, or switching to a new primary. Originally,  one  of  the  service  instances  is  

designated as a primary and others as backups. After a failure of the primary , the backups 

agree on a new primary that restarts the execution from the last Checkpoint state. Hereafter, all 

future requests are directed to and processed by it. 

 
 

Fig. 5. Fault Tolerant Architecture 
 

Figure 3 shows the system with no faults and process is going on properly with the backups 

consisting internally in it by sending the heart beat message to the Grid Service Broker. . The client 

submits the job to the Grid Service Broker and then the Grid resource broker performs resource 

discovery based on user-defined characteristics, using the Grid information service(step 1). The 

broker identifies the list of data sources or replicas and selects the optimal ones(step 2) .  The 

broker ensures that the user has the necessary credit or authorized share to utilise resources(step 3) . 

The broker scheduler maps and deploys data analysis jobs on resources that meet user quality-of-

service requirements(step 4) . The broker agent on a resource executes the job and returns 

results(step 5) . The broker collects the results and passes them to the user(step 6). 

 
Fig. 6. Architecture with backup 
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Fig. 4. Fault Tolerant Architecture with backup 

 

Figure 4 shows an efficient exploitation of all the machines (primaries and  replica ), in order to 

have each machine both serving client requests and acting as backup for other machines. Now, let 

us make some considerations on the protocol above described, giving some more details on it: 

 Even though state updates are asynchronous events, they are sent from the primary to the 

backup by the synchronous updateModel operation; this guarantees that the primary has a 

control on the reception of the updates by the backups. In fact, for consistency reasons, it is 

important that the computation can go ahead only if all the backups have stored the last 

checkpointed global model. 

 Whenever a role of primary is assigned to a backup, it re-starts the computation from the 

last committed GlobalModel. Since it has no control on the operations performed by the old 

primary after the last checkpoint and before the failure, the new primary performs the 

following choices: if the last checkpointed global model is the final model, it is just 

delivered to the client; otherwise, if it needs more processing, the new primary submits to 

the local services the task to be performed (probably, the same submitted by the old primary 

before its failure). 

• The protocol guarantees hiding of any failure to the client, in fact no interaction is requested 

during all the process (even if a failure occurs).  

• The protocol does not consider the failures of a backup service before its activation as primary; 

the only new issue are the detection of backup failures and the integration of new backup into 

the system. These steps would not interfere with the operation of the surviving system 

components and its implementation is not complex.  

 

4. Conclusions and Future Work 

Owing to the heterogeneity and complexity of the Grids, executing long distributed data 

mining tasks in a reliable way is a challenge. We introduced an efficient exploitation of all 

the machines (primaries and replica), in order to have each machine both serving client 

requests and acting as backup for the other machines. 

 

As future we plan to introduce some mechanisms for load balancing which can be used in order to 

have a load-aware assignment of the mining tasks. 
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