

Intuitionistic Fuzzy αg^{**} -Closed sets, Intuitionistic Fuzzy αg^{**} -Continuity and Intuitionistic Fuzzy αg^{**} -Homeomorphisms

M. THIRUMALAISWAMY Associate Professor, Department of Mathematics, NGM College, Pollachi-642001, (Tamil Nadu) India

S. BIRUNDHA Department of Mathematics, NGM College, Pollachi-642001, (Tamil Nadu) India.

Abstract:

In this paper, we introduce and study the notions of intuitionistic fuzzy αg^{**} - closed sets, intuitionistic fuzzy αg^{**} - continuity, intuitionistic fuzzy αg^{**} - open mapping, intuitionistic fuzzy αg^{**} - closed mapping, intuitionistic fuzzy αg^{**} - homeomorphisms and some of its properties in intuitionistic fuzzy topological spaces.

Key words: Intuitionistic fuzzy g^* - closed set, intuitionistic fuzzy g^{**} - closed sets, intuitionistic fuzzy αg^{**} - closed sets, intuitionistic fuzzy αg^{**} - continuity, intuitionistic fuzzy αg^{**} - open mapping, intuitionistic fuzzy αg^{**} - closed mapping and intuitionistic fuzzy αg^{**} - homeomorphisms

1. Introduction

Zadeh [12] introduced the notion of fuzzy sets. Later on, fuzzy topology was introduced by Chang [2] in 1967. The concept of intuitionistic fuzzy topology was introduced by Atanassov [1] as a generalization of fuzzy sets. Using the notion of intuitionistic fuzzy sets, Coker [3] introduced the notion of intuitionistic fuzzy topological space. In this paper, we introduce the concepts of intuitionistic fuzzy αg^{**} -closed sets, intuitionistic fuzz αg^{**} -continuity, intuitionistic fuzzy αg^{**} -closed mapping, intuitionistic fuzzy αg^{**} -closed mapping, intuitionistic fuzzy sets.

2. Preliminaries

2.1 Definition [1]

An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$, where the functions $\mu_A : X \to [0, 1]$ and $\gamma_A : X \to [0, 1]$ denote the the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.

2.2 Definition [1]

Let A and B be intuitionistic fuzzy sets of the form $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}$ and $B = \{ \langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X \}$. Then

1. $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\gamma_A(x) \geq \gamma_B(x)$ for all $x \in X$.

1 Online International, Reviewed & Indexed Monthly Journal www.raijmr.com RET Academy for International Journals of Multidisciplinary Research (RAIJMR)

- 2. A = B if and only if $A \subseteq B$ and $B \subseteq A$.
- 3. $A^c = \{ \langle x, \gamma_A(x), \mu_A(x) \rangle : x \in X \}.$
- 4. $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \gamma_A(x) \lor \gamma_B(x) \rangle : x \in X \}.$
- 5. $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \gamma_A(x) \land \gamma_B(x) \rangle : x \in X \}.$

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \gamma_A \rangle$ instead of $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$. Also for the sake of simplicity, we shall use the notation $A = \langle x, (\mu_A, \mu_B), (\gamma_A, \gamma_B) \rangle$ instead of $A = \langle x, (A/\mu_A, B/\mu_B), (A/\gamma_A, B/\gamma_B) \rangle$.

The intuitionistic fuzzy sets $0_{\sim} = \{ \langle x, 0, 1 \rangle : x \in X \}$ and $1_{\sim} = \{ \langle x, 1, 0 \rangle : x \in X \}$ are respectively the empty and whole set of X.

2.3 Definition [3]

An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms:

- 1. $0_{\sim}, 1_{\sim} \in \tau$,
- 2. $G_1 \cap G_2 \in \tau$, for any $G_1, G_2 \in \tau$,
- 3. \cup $G_i \in \tau$, for any family $\{G_i / i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic closed set (IFCS in short) in X.

2.4 Definition [3]

Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \gamma_A \rangle$ be an IFS in X. Then

- 1. $int(A) = \bigcup \{G \mid G \text{ is an IFOS in X and } G \subseteq A\}.$
- 2. $cl(A) = \bigcap \{K/K \text{ is an IFCS in } X \text{ and } A \subseteq K \}.$
- 3. $cl(A^c) = (int(A))^c$.
- 4. $int(A^{c}) = (cl(A))^{c}$.

2.5 Result [9]

Let A be an IFS in (X, τ) . Then

- 1. $\alpha cl(A) = A \cup cl(int(cl(A)))$
- 2. $\alpha int(A) = A \cap int(cl(int(A)))$

2.6 Definition [4]

An IFS $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle \colon x \in X \}$ in an IFTS (X, τ) is said to be an

- 1. intuitionistic fuzzy regular open set (IFROS) if A = int(cl(A)).
- 2. intuitionistic fuzzy α open set (IF α OS) if $A \subseteq int(cl(int(A)))$.

An IFS A is said to be an intuitionistic fuzzy regular closed set (IFRCS) and intuitionistic fuzzy α - closed set (IF α CS) if the complement of A is an IFROS and IF α OS respectively.

2.7 Definition

An IFS $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}$ in an IFTS (X, τ) is said to be an

- 1. Intuitionistic fuzzy α generalized closed set (IF α GCS) [6] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X.
- 2. Intuitionistic fuzzy regular generalized closed set (IFRGCS) [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFROS in X.

An IFS A is said to be an intuitionistic fuzzy α - generalized open set (IF α GOS) and intuitionistic fuzzy regular generalized open set (IFRGOS) if the complement of A is IF α GCS and IFRGCS respectively.

2.8 Definition [4]

Let (X, τ) and (Y, σ) be two intuitionistic fuzzy topological spaces and let $f : X \to Y$ be a function. Then f is said to be an intuitionistic fuzzy continuous if the pre image of each intuitionistic fuzzy open set of Y is an intuitionistic fuzzy open set in X.

2.9 Definition [9]

Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy α -continuous if $f^{-1}(B) \in IF\alpha O(X)$ for every $B \in \sigma$.

2.10 Definition [7]

Let (X, τ) and (Y, σ) be two intuitionistic fuzzy topological spaces and let $f : X \to Y$ be a function. Then f is said to be an intuitionistic fuzzy α g-continuous if pre image of every intuitionistic fuzzy closed set in Y is intuitionistic fuzzy α g-closed in X.

2.11 Definition [11]

Let $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \leq 1$. An intuitionistic fuzzy point (briefly IFP), written as $p_{(\alpha,\beta)}$, is defined to be an IFS of X given by

$$p_{(\alpha,\beta)}(x) = \begin{cases} (\alpha,\beta) , & if \ x = P \\ (0,1) & otherwise \end{cases}$$

We observe that an IFP $p_{(\alpha,\beta)}$ is said to belong to an IFS $A = \langle x, \mu_A(x), \gamma_A(x) \rangle$, denoted by $p_{(\alpha,\beta)} \in A$ if $\alpha \leq \mu_A(x)$ and $\beta \geq \gamma_A(x)$.

2.12 Definition [11]

Two IFSs A and B are said to be q-coincident (A_qB in short) if and only if there exists an element $x \in X$ such that $\mu_A(x) > \gamma_B(x)$ or $\gamma_A(x) < \mu_B(x)$.

2.13 Definition [11]

Two IFSs are said to be not q-coincident ($A_a^c B$ in short) if and only if $A \subseteq B^c$.

2.14 Definition [4]

Let (X, τ) and (Y, σ) be two intuitionistic fuzzy topological spaces and let $f : X \to Y$ be a function. Then f is said to be an

- (i) Intuitionistic fuzzy closed map if the image of each intuitionistic fuzzy closed set in X is an intuitionistic fuzzy closed set in Y.
- (ii) Intuitionistic fuzzy open map if the image of each intuitionistic fuzzy open set in X is an intuitionistic fuzzy open set in Y.

2.15 Definition [5]

Let *f* be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then *f* is said to be an intuitionistic fuzzy α -closed mapping (IF α -closed mapping in short) if f(A) is an IF α CS in Y for every IFCS A in X.

2.16 Definition [8]

Let f be a bijection mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an

- (i) Intuitionistic fuzzy homeomorphism (IF homeomorphism in short) if f and f^{-1} are IF continuous mappings.
- (ii) Intuitionistic fuzzy α -homeomorphism (IF α -homeomorphism in short) if f and f^{-1} are IF α continuous mappings.

3 Online International, Reviewed & Indexed Monthly Journal www.raijmr.com RET Academy for International Journals of Multidisciplinary Research (RAIJMR)

3. Intuitionistic Fuzzy αg^{**} - Closed sets

In this section, we introduced the concept of intuitionistic fuzzy αg^{**} -closed sets and studied some of its properties in intuitionistic fuzzy topological spaces.

3.1 Definition An IFS A of an IFTS (X, τ) is said to be an intuitionistic fuzzy g^* -closed set (briefly IF g^* CS) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFGOS in X.

3.2 *Example* Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ be an IFTS on X, where A =<x, (0.5,0.6), (0.3,0.2)>. Then S = <x, (0.2,0.2), (0.6,0.6)> is an IF g^* CSin X.

3.3 Definition An IFS A of an IFTS (X,τ) is said to be an intuitionistic fuzzy g^* -open set (briefly IF g^*OS) if the complement A^c is an IF g^*CS in X.

3.4 Example Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ be an IFTS on X, where A =<x, (0.5,0.6), (0.3,0.2)>. Then S = <x, (0.5,0.6), (0.3,0.2)> is an IF $g^*OSin X$.

3.5 *Definition* An IFS A of an IFTS (X,τ) is said to be an intuitionistic fuzzy g^{**} -closed set (briefly IF g^{**} CS) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IF g^{*} OS in X.

3.6 *Example* Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ be an IFTS on X, where A =<x, (0.5,0.6), (0.3,0.2)>. Then S = <x, (0.2,0.2), (0.6,0.7)> is an IF g^{**} CSin X.

3.7 *Definition* An IFS A of an IFTS (X,τ) is said to be an intuitionistic fuzzy g^{**} -open set (briefly IF g^{**} OS) if the complement A^c is an IF g^{**} CS in X.

3.8 Example Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ be an IFTS on X, where A =<x, (0.5,0.6), (0.3,0.2)>. Then S = <x, (0.5,0.6), (0.3,0.2)> is an IF g^{**} OSin X.

3.9 Theorem Every IFCS (resp. IFOS) is an IF g^{**} CS (resp. IF g^{**} OS) but not conversely. **Proof:** Let A \subseteq U and U is IFOS in (X, τ). Since $\alpha cl(A) \subseteq cl(A)$ and A is an IFCS, $\alpha cl(A) \subseteq cl(A) = A \subseteq U$. Therefore A is an IF g^{**} CS in X.

3.10 Example Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ be an IFTS on X, where A=<x, (0.2,0.4), (0.1,0.2)>. Then S = <x, (0.1,.2), (.4,0.5)> is an IF g^{**} CS but not IFCS in X.

3.11 Definition An IFS A of an IFTS (X, τ) is said to be intuitionistic fuzzy αg^{**} -closed set (briefly IF αg^{**} CS) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is IF g^{**} OS in X. The set of all IF αg^{**} CSs of X is denoted by IF αg^{**} C(X).

3.12 *Example* Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ be an IFTS on X, where $A = \langle x, (0.5, 0.6), (0.3, 0.2) \rangle$. Then the IFS $S = \langle x, (0.3, 0.2), (0.5, 0.6) \rangle$ is an IF α^{**} GCS in (X, τ) .

3.13 Theorem Every IFCS, IFRCS and IF α CS in (*X*, τ) is an IF αg^{**} CS, but not conversely. *Proof: Obvious*

3.14 *Example* (i) Let $X = \{a, b\}$ and $\tau = \{0, A, 1, \}$ be an IFTS on X where $A = \langle x, (0.5, 0.6), (0.3, 0.2) \rangle$. Then $S = \langle x, (0.2, 0.2), (0.5, 0.6) \rangle$ is an IF $\alpha g^{**}CS$ but not an IFCS and IFRCS in X.

(ii) Let X = {a, b} and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ be an IFTS on X where A= < x, (0.2, 0.1), (0.2, 0.4) >. Then S= < x, (0.2, 0.2), (0.6, 0.8) > is an IF αg^{**} CS but not an IF α CS in X.

3.15 Theorem Every IF $\alpha g^{**}CS$ in (X, τ) is an IF αGCS , but not conversely. **Proof:** Let $A \subseteq U$ where U is IFOS in X. Since every IFOS is an IF $g^{**}OS$ and A is IF $\alpha g^{**}CS$ we have $\alpha cl(A) \subseteq U$. Hence A is an IF αGCS in X.

3.16 *Example* Let X = {a, b} and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ be an IFTS on X, where A= < x, (0.5, 0.4), (0.2, 0.1) >. Then the IFS S= < x, (0.6, 0.3), (0.2, 0.1) > is an IF α GCS in (*X*, τ) but not an IF αg^{**} CS in X.

3.17 Remark

From the above theorems, we have the following diagram.

where $A \rightarrow B$ represents A imply B, $A \not\rightarrow B$ represents A does not imply B.

3.18 Theorem Union of two IF αg^{**} CSs again an IF αg^{**} CS.

Proof: Let U be an IF g^{**} OS in X, such that $A \cup B \subseteq U$. Since A and B are IF αg^{**} CSs we have $\alpha cl(A) \subseteq U$ and $\alpha cl(B) \subseteq U$. Therefore $\alpha cl(A) \cup \alpha cl(B) \subseteq \alpha cl(A \cup B) \subseteq U$. Hence $A \cup B$ is an IF αg^{**} CS in (X, τ) .

3.19 Theorem If A is an IF αg^{**} CS and $A \subseteq B \subseteq \alpha cl(A)$ then B is an IF αg^{**} CS. **Proof:** Let U be an IF g^{**} OS such that $\subseteq U$. Since A is an IF αg^{**} CS, we have $\alpha cl(A) \subseteq U$. By hypothesis $B \subseteq \alpha cl(A)$ then $\alpha cl(B) \subseteq \alpha cl(A)$. This implies $\alpha cl(B) \subseteq U$. Hence B is an IF αg^{**} CS.

3.20 Definition An IFS A of an IFTS (X, τ) is called an intuitionistic fuzzy αg^{**} open set (IF αg^{**} OS in short) if and only if A^c is an IF αg^{**} CS in (X, τ) .

3.21 Theorem For any IFTS (X, τ) , we have the following:

- (i) Every IFOS is an IF αg^{**} OS
- (ii) Every IF α OS is an IF αg^{**} OS
- (iii) Every IFROS is an IF αg^{**} OS

Proof: Obvious.

3.21 Theorem If A is an IF αg^{**} OS and $\alpha int(A) \subseteq B \subseteq A$, then B is an IF αg^{**} OS. **Proof:** If $\alpha int(A) \subseteq B \subseteq A$, then $A^c \subseteq B^c \subseteq (\alpha int(A))^c = \alpha cl(A^c)$. Since A^c is an IF αg^{**} CS, then by Theorem 3.21, B^c is an IF αg^{**} CS. Therefore B is an IF αg^{**} OS.

4. Intuitionistic Fuzzy $\alpha^{**}g$ - Continuity

In this section we introduced the concept of intuitionistic fuzzy $\alpha^{**}g$ -continuous mapping and studied some of its properties.

4.1 Definition A mapping $f:(X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy αg^{**} -continuous (briefly IF αg^{**} -continuous) if inverse image of every intuitionistic fuzzy closed set of Y is an intuitionistic fuzzy αg^{**} -closed set in X.

4.2 *Example* Let X= {a, b}, Y={u, v} and A= < x, (0.1, 0.2), (0.2, 0.2) >, B = < y, (0.5,0.6), (0.1,0.1) >. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF αg^{**} -continuous mapping.

4.3 Theorem A mapping $f: (X, \tau) \to (Y, \sigma)$ is an IF αg^{**} -continuous if and only if the inverse image of every IFOS of Y is an IF αg^{**} OS in X. **Proof:** It is obvious, because $f^{-1}(B^c) = (f^{-1}(B))^c$ for every IFS B of Y.

4.4 *Theorem* Every intuitionistic fuzzy continuous mapping is $IF\alpha g^{**}$ - continuous, but converse may not be true.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy continuous mapping. Let A be an IFCS in Y. Then $f^{-1}(A)$ is IFCS. Since every IFCS is $IF\alpha g^{**}CS$, $f^{-1}(A)$ is an $IF\alpha g^{**}CS$ in X. Hence f is an $IF\alpha g^{**}$ -continuous mapping.

4.5 *Example* Let X= {a, b}, Y={u, v} and A= < x, (0.5, 0.6), (0.3, 0.2) >, B = < y, (0.5, 0.6), (0.2, 0.2) >. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. The intuitionistic fuzzy set S = < y, (0.2, 0.2), (0.5, 0.6) > is IFCS in Y. Then $f^{-1}(S)$ is IF αg^{**} CS in X but not IFCS in X. Therefore, f is an IF αg^{**} -continuous mapping but not an intuitionistic fuzzy continuous mapping.

4.6 Theorem Every intuitionistic fuzzy α -continuous mapping is IF αg^{**} -continuous, but converse may not be true.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy α -continuous mapping. Let A be an IFCS in Y. Then $f^{-1}(A)$ is IF α CS. Since every IF α CS is IF αg^{**} CS, $f^{-1}(A)$ is an IF αg^{**} CS in X. Hence f is an IF αg^{**} -continuous mapping.

4.7 *Example* Let X= {a, b}, Y={u, v} and A= < x, (0.2, 0.1), (0.2, 0.4) >, B = < y, (0.2, 0.4), (0.2, 0.1) >. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. The intuitionistic fuzzy set S = < y, (0.2, 0.1), (0.2, 0.4) > is IFCS in Y. Then $f^{-1}(S)$ is IF αg^{**} CS in X but not IF α CS in X. Therefore, f is an IF αg^{**} -continuous mapping but not an intuitionistic fuzzy α -continuous mapping.

4.8 Theorem Every intuitionistic fuzzy αg^{**} -continuous mapping is IF α G-continuous, but converse may not be true.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy αg^{**} -continuous mapping. Let A be an IFCS in Y. By hypothesis, $f^{-1}(A)$ is an IF α GCS in X. Hence f is an IF α G -continuous mapping.

4.9 Example Let X= {a, b}, Y={u, v} and A= < x, (0.5, 0.4), (0.2, 0.1) >, B = < y, (0.2,0.1), (0.6,0.3) >. Then τ = {0_∼, A, 1_∼}, σ = {0_∼, B, 1_∼} are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping f:(X,τ) → (Y,σ) by f(a) = u and f(b) = v.The intuitionistic fuzzy set S = < y, (0.6, 0.3), (0.2, 0.1) > is IFCS in Y.
6 Online International, Reviewed & Indexed Monthly Journal www.raijmr.com RET Academy for International Journals of Multidisciplinary Research (RAIJMR)

Then $f^{-1}(S)$ is IF α GCS in X but not IF αg^{**} CS in X. Therefore f is an IF α G -continuous mapping but not an intuitionistic fuzzy αg^{**} -continuous mapping.

The relation between various types of intuitionistic fuzzy continuity are given in the following diagram. In this diagram 'cts.' means continuous.

4.10 Theorem If $f: (X, \tau) \to (Y, \sigma)$ is an IF αg^{**} -continuous then for each IFP $p_{(\alpha,\beta)}$ of X and each IFOS B of Y such that $f(p_{(\alpha,\beta)}) \subseteq B$ there exists an intuitionistic fuzzy αg^{**} -open set A of X such that $p_{(\alpha,\beta)} \subseteq A$ and $f(A) \subseteq B$.

Proof: Let $p_{(\alpha,\beta)}$ be an IFP of X and B be an IFOS of Y such that $f(p_{(\alpha,\beta)}) \subseteq B$. Put $A = f^{-1}(B)$. Then by hypothesis A is an intuitionistic fuzzy αg^{**} -open set of X such that $p_{(\alpha,\beta)} \subseteq A$ and $f(A) = f(f^{-1}(B)) \subseteq B$.

4.11 Theorem If $f:(X,\tau) \to (Y,\sigma)$ is an IF αg^{**} -continuous then for each IFP $p_{(\alpha,\beta)}$ of X and each IFOS B of Y such that $f(p_{(\alpha,\beta)})_q B$ there exists an intuitionistic fuzzy αg^{**} -open set A of X such that $p_{(\alpha,\beta)_q}A$ and $f(A) \subseteq B$.

Proof: Let $p_{(\alpha,\beta)}$ be an IFP of X and B be an IFOS of Y such that $f(p_{(\alpha,\beta)})_q B$. Put $A = f^{-1}(B)$. Then by hypothesis A is an intuitionistic fuzzy αg^{**} -open set of X such that $p_{(\alpha,\beta)}_q A$ and $f(A) = f(f^{-1}(B)) \subseteq B$.

4.12 Definition Let (X, τ) be an IFTS and A be an IFS in X. Then αg^{**} - interior and αg^{**} -closure of A are defined as

 $\alpha g^{**}cl(A) = \cap \{ \text{K: K is an } \text{IF}\alpha g^{**}\text{CS in X and } A \subseteq K \}$ $\alpha g^{**}int(A) = \cup \{ \text{G: G is an } \text{IF}\alpha g^{**}\text{OS in X and } G \subseteq A \}$ If A is $\text{IF}\alpha g^{**}\text{CS}$, then $\alpha g^{**}cl(A) = A$.

4.13 Theorem If $f:(X,\tau) \to (Y,\sigma)$ is IF αg^{**} - continuous and $g:(Y,\sigma) \to (Z,\mu)$ in intuitionistic fuzzy continuous, then $g \circ f:(X,\tau) \to (Z,\mu)$ is IF αg^{**} - continuous. **Proof:** Let A be an IFCS in Z. Then $g^{-1}(A)$ is an IFCS in Y because g is intuitionistic fuzzy continuous. Therefore, $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$ is an IF αg^{**} CS in X. Hence $g \circ f$ is IF αg^{**} - continuous.

4.14 Theorem Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping and let $f^{-1}(A)$ be an IFRCS in X for every IFCS A in Y. Then f is an IF αg^{**} -continuous mapping.

Proof: Let A be an IFCS in Y. Then $f^{-1}(A)$ is an IFRCS in X. Since every IFRCS is an IF αg^{**} CS, $f^{-1}(A)$ is an IF αg^{**} CS in X. Hence f is an IF αg^{**} -continuous mapping.

4.15 Theorem Let $f:(X,\tau) \to (Y,\sigma)$ be an IF αg^{**} - continuous mapping. Then the following conditions are hold:

- (i) $f(\alpha g^{**}cl(A)) \subseteq cl(f(A))$, for every IFS A in X
- (ii) $\alpha g^{**}cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$, for every IFS B in Y.

Proof: (i) Since cl(f(A)) is an IFCS in Y and f is an IF αg^{**} -continuous mapping, then $f^{-1}(cl(f(A)))$ is IF αg^{**} CS in X. That is $\alpha g^{**}cl(A) \subseteq f^{-1}(cl(f(A)))$. Therefore

 $f(\alpha g^{**}cl(A)) \subseteq cl(f(A))$, for every IFS A in X. (ii) Replacing A by $f^{-1}(B)$ in (i), we have $f(\alpha g^{**}cl(f^{-1}(B))) \subseteq cl(f(f^{-1}(B))) \subseteq cl(B)$. Hence $\alpha g^{**}cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$, for every IFS B in Y.

5. Intuitionistic Fuzzy αg^{**} - Open Mapping

In this section we introduced the concept of intuitionistic fuzzy αg^{**} - open mapping and studied some of its properties.

5.1 Definition A mapping $f: (X, \tau) \to (Y, \sigma)$ is an intuitionistic fuzzy αg^{**} -open mapping (briefly IF αg^{**} -open mapping) if the image of every IFOS in X is IF αg^{**} OS in Y.

5.2 *Example* Let X = {a, b}, Y = {x, y} and A= < x, (0.2, 0.1), (0.6, 0.3) >, B = < y, (0.2, 0.1), (0.5, 0.2) >. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = x and f(b) = y. Then f is an IF αg^{**} -open mapping.

5.3 *Theorem* Every intuitionistic fuzzy open map is an $IF\alpha g^{**}$ -open map but converse may not be true.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be an intuitionistic fuzzy open mapping. Let A be an IFOS in X. Since f is an intuitionistic fuzzy open mapping, f(A) is an IFOS in Y. Since every IFOS is an IF αg^{**} OS, f(A) is an IF α^{**} GOS in Y. Hence f is an IF αg^{**} -open mapping.

5.4 Example Let X = {a, b}, Y = {x, y} and A= < x, (0.2, 0.1), (0.6, 0.3) >, B = < y, (0.2, 0.1), (0.5, 0.2) >. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = x and f(b) = y. Then f is an IF αg^{**} -open mapping but not an intuitionistic fuzzy open mapping.

5.5 Theorem $f:(X,\tau) \to (Y,\sigma)$ is $\operatorname{IF} \alpha g^{**}$ - open map then $int(f^{-1}(G)) \subseteq f^{-1}(\alpha g^{**}int(G))$ for every IFS G of Y.

Proof: Let G be an IFS of Y. Then $int(f^{-1}(G))$ is an IFOS in X. Since f is an IF αg^{**} -open map $f(int(f^{-1}(G)))$ is IF αg^{**} OS in Y and hence $f(int(f^{-1}(G))) \subseteq \alpha g^{**}int(f(f^{-1}(G))) \subseteq \alpha g^{**}int(f(f^{-1}(G))) \subseteq \alpha g^{**}int(f(f^{-1}(G))) \subseteq f^{-1}(\alpha g^{**}int(G)).$

5.6 Theorem A mapping $f: (X, \tau) \to (Y, \sigma)$ is an IF αg^{**} -open if and only if for each IFS S of Y and for each IFCS U of X containing $f^{-1}(S)$ there is an IF αg^{**} CS V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof:

Necessity: Suppose that f is an IF αg^{**} -open map. Let S be the IFCS of Y and U be an IFCS of X such that $f^{-1}(S) \subseteq U$. Then $V = (f^{-1}(U^c))^c$ is an IF αg^{**} CS of Y such that $f^{-1}(V) \subseteq U$. *Sufficiency:* Suppose that F is an IFOS of X. Then $f^{-1}(f(F))^c \subseteq F^c$ and F^c is an IFCS in X. By hypothesis there is an IF αg^{**} CS V of Y such that $(f(F))^c \subseteq V$ and $f^{-1}(V) \subseteq F^c$. Therefore $F \subseteq (f^{-1}(V))^c$. Hence $V^c \subseteq f(F) \subseteq f((f^{-1}(V))^c) \subseteq V^c$ which implies $f(F) = V^c$, since V^c is an IF $\alpha g^{**}OS$ of Y. Hence f(F) is an IF $\alpha g^{**}OS$ in Y and thus f is an IF αg^{**} -open map.

5.7 *Theorem* A mapping $f: (X, \tau) \to (Y, \sigma)$ is an IF αg^{**} -open if and only if $f^{-1}(\alpha g^{**}cl(B)) \subseteq cl(f^{-1}(B))$ for every IFS B of Y.

Proof:

Necessity: Suppose that f is an IF αg^{**} -open map. For any IFS B of Y, $f^{-1}(B) \subseteq cl(f^{-1}(B)$. Therefore by Theorem (5.6) there exists an IF $\alpha g^{**}CS$ F of Y such that $B \subseteq F$ and $f^{-1}(F) \subseteq cl(f^{-1}(B))$. Therefore we obtain that $f^{-1}(\alpha g^{**}cl(B)) \subseteq f^{-1}(F) \subseteq cl(f^{-1}(B))$.

Sufficiency: Suppose that B is an IFS of Y and F is an IFCS of X containing $f^{-1}(B)$. Put V = cl(B), then $B \subseteq V$ and V is $IF\alpha g^{**}CS$ and $f^{-1}(V) \subseteq cl(f^{-1}(B) \subseteq F$. Then by Theorem (5.6) f is an $IF\alpha g^{**}$ -open map.

6. Intuitionistic Fuzzy αg^{**} - Closed Mapping

In this section we introduced the concept of intuitionistic fuzzy αg^{**} - closed mapping and studied some of its properties.

6.1 Definition A mapping $f: (X, \tau) \to (Y, \sigma)$ is an intuitionistic fuzzy αg^{**} -closed mapping (briefly IF αg^{**} -closed mapping) if the image of every IFCS in X is IF αg^{**} CS in Y.

6.2 Example Let $X = \{a, b\}$, $Y = \{x, y\}$ and $A = \langle x, (0.5, 0.6), (0.2, 0.1) \rangle$, $B = \langle y, (0.5, 0.4), (0.2, 0.1) \rangle$. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = x and f(b) = y. Then f is an IF αg^{**} -closed mapping.

Theorem 6.3: Every intuitionistic fuzzy closed map is an IF αg^{**} -closed map but converse may not be true.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy closed mapping. Let A be an IFCS in X. Since f is an intuitionistic fuzzy closed mapping, f(A) is an IFCS in Y. Since every IFCS is an IF αg^{**} CS, f(A) is an IF αf^{**} GCS in Y. Hence f is an IF αg^{**} -closed mapping.

6.4 *Example* Let X = {a, b}, Y = {x, y} and A = < x, (0.5, 0.6), (0.2, 0.1) >, B = < y, (0.5, 0.4), (0.2, 0.1) >. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f:(X, \tau) \to (Y, \sigma)$ by f(a) = x and f(b) = y. Then f is an IF αg^{**} -closed mapping but not intuitionistic fuzzy closed mapping.

6.5 Theorem Every intuitionistic fuzzy α -closed map is an IF αg^{**} -closed map but converse may not be true.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy α -closed mapping. Let A be an IFCS in X. Since f is an intuitionistic fuzzy α -closed mapping, f(A) is an IF α CS in Y. Since every IF α CS is an IF αg^{**} CS, f(A) is an IF α^{**} GCS in Y. Hence f is an IF αg^{**} -closed mapping.

6.6 *Example* Let X = {a, b}, Y = {x, y} and A= < a, (0.5, 0.2), (0.5, 0.8) >, B = < x, (0.2, 0.4), (0.3, 0.6) >. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = x and f(b) = y. Then f is an IF αg^{**} -closed mapping but not intuitionistic fuzzy α -closed mapping.

6.7 *Theorem* A mapping $f:(X,\tau) \to (Y,\sigma)$ is an IF αg^{**} -closed mapping if and only if the image of each IFOS in X is an IF αg^{**} OS in Y.

Proof: Let A be an IFOS in X. This implies A^c is IFCS in X. Since f is an IF αg^{**} -closed mapping, $f(A^c)$ is an IF αg^{**} CS in Y. Since $f(A^c) = (f(A))^c$, f(A) is an IF αg^{**} OS in Y.

The relation between various types of intuitionistic fuzzy closed mappings are given in the following diagram.

6.8 Theorem If $f: (X, \tau) \to (Y, \sigma)$ is an intuitionistic fuzzy closed map and $g: (Y, \sigma) \to (Z, \mu)$ is an IF αg^{**} -closed map, then $g \circ f: (X, \tau) \to (Z, \mu)$ is IF αg^{**} -closed mapping.

Proof: Let H be an IFCS of an IFTS (X, τ) . Then f(H) is IFCS of (Y, σ) , because f is intuitionistic fuzzy closed map. Now $g \circ f(H) = g(f(H))$ is an IF $\alpha g^{**}CS$ in (Z, μ) because g is IF αg^{**} -closed map. Thus $g \circ f: (X, \tau) \to (Z, \mu)$ is IF αg^{**} -closed mapping.

6.9 Theorem Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \mu)$ are two intuitionistic fuzzy mappings such that their composition $g \circ f: (X, \tau) \to (Z, \mu)$ is IF -closed mapping. If f is intuitionistic fuzzy continuous and surjective, then g is IF αg^{**} -closed.

Proof: Let A be an IFCS of Y Since f is intuitionistic fuzzy continuous $f^{-1}(A)$ is IFCS in X. Since $g \circ f$ is IF αg^{**} -closed, $g \circ f(f^{-1}(A))$ is intuitionistic fuzzy αg^{**} -closed in Z. That is g(A) is IF αg^{**} -closed in Y, because f is surjective. Therefore g is IF αg^{**} -closed.

7. Intuitionistic Fuzzy αg^{**} - Homeomorphisms

In this section we introduced the concept of intuitionistic fuzzy αg^{**} - homeomorphisms and studied some of its properties.

7.1 Definition A bisection mapping $f:(X,\tau) \to (Y,\sigma)$ is called an intuitionistic fuzzy αg^{**} - homeomorphism (IF αg^{**} -homeomorphism in short) if f and f^{-1} are IF αg^{**} -continuous mappings.

7.2 *Example* Let X = {a, b}, Y = {x, y} and A= < x, (0.2, 0.6), (0.6, 0.2) >, B = < y, (0.3, 0.7), (0.7, 0.3) >. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = x and f(b) = y. Then f is an intuitionistic fuzzy αg^{**} -homeomorphism.

Theorem 7.3: Every IF homeomorphism is an IF αg^{**} -homeomorphism but converse may not be true.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be an IF homeomorphism. Then f and f^{-1} are IF continuous mappings. This implies f and f^{-1} are IF α^{**} G-continuous mappings. Hence f is IF αg^{**} -homeomorphism.

7.4 Example Let X = {a, b}, Y = {x, y} and A= < x, (0.5, 0.6), (0.3, 0.2) >, B = < y, (0.5, 0.6), (0.2, 0.2) >. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = x and f(b) = y. Then f is intuitionistic fuzzy αg^{**} -homeomorphism but not an IF homeomorphism.

7.5 *Theorem* Every IF α homeomorphism is an IF αg^{**} -homeomorphism but converse may not be true.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an IF α -homeomorphism. Then f and f^{-1} are IF α -continuous mappings. This implies f and f^{-1} are IF αg^{**} -continuous mappings. Hence f is IF αg^{**} -homeomorphism.

7.6 Example Let X = {a, b}, Y = {x, y} and A = < x, (0.2, 0.1), (0.2, 0.4) >, B = < y, (0.6, 0.8), (0.2, 0.2) >. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = x and f(b) = y. Then f is an intuitionistic fuzzy αg^{**} -homeomorphism but not an IF α -homeomorphism.

7.7 **Theorem** Let $f:(X,\tau) \to (Y,\sigma)$ be a bijective mapping. If f is an IF αg^{**} -continuous mapping, then the following are equivalent.

- (i) f is an IF αg^{**} closed mapping
- (ii) f is an IF αg^{**} open mapping
- (iii) f is an IF αg^{**} homeomorphism.

Proof: (i) \rightarrow (ii): Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a bijective mapping and let f be an IF αg^{**} - closed mapping. This implies $f^{-1}:(Y,\sigma) \rightarrow (X,\tau)$ is IF αg^{**} - continuous mapping. That is every IFOS in X is an IF $\alpha g^{**}OS$ in Y. Hence f is an IF αg^{**} - open mapping.

 $(ii) \rightarrow (iii)$: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a bijective mapping and let f be an IF αg^{**} - open mapping. This implies $f^{-1}: (Y, \sigma) \rightarrow (X, \tau)$ is IF αg^{**} - continuous mapping. But f is an IF αg^{**} - continuous mapping by hypothesis. Hence f and f^{-1} are IF αg^{**} -continuous mappings. Thus, f is IF αg^{**} -homeomorphism.

 $(iii) \rightarrow (i)$: Let f be an IF αg^{**} -homeomorphism. That is f and f^{-1} are IF αg^{**} -continuous mappings. Sine every IFCS in X is an IF $\alpha g^{**}CS$ in Y, f is an IF αg^{**} - closed mapping.

References

- 1. Atanassov, K. T. (1986). Intuitionistic fuzzy sets, Fuzzy sets and systems. 87-96.
- 2. Chang, C. L. (1986). Fuzzy topological spaces, J. Math. Anal. Appl, 24, 81-89.
- 3. Coker, D. (1997). An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 88, 81-89.
- 4. Gurcay, H., Coker, D and Hayder, Es. A., (1997). On fuzzy continuity in intuitionistic fuzzy topological spaces, The Journal of Fuzzy Mathematics, 365-378.
- 5. Joung, Kon Jeon., Young, Bae Jun and Jin, Han Park,(2005). Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences, 3091-3101.
- Kalamani, D., Sakthivel, K and Gowri, C. S. (2012). Generalized alpha closed sets in intuitionistic fuzzy topological spaces, Applied Mathematical Sciences, 6 (94), 4691-4700.
- Sakthivel, K. (2010). Intuitionistic fuzzy Alpha generalized continuous mappings and Intuitionistic fuzzy Alpha generalized irresolute mappings, Applied Mathematical Sciences, 1831-1842.
- 8. Santhi, R. and Sakthivel, K (2011). Alpha generalized Homeomorphisms in Intuitionistic Fuzzy Topological Spaces, NIFS, 30-36.
- 9. Santhi, R. and Sakthivel, K. (2009). Intuitionistic fuzzy generalized semi continuous mappings, Advances in Theoretical and Applied Mathematics. 73-82
- 10. Thakur, S. S. and Rekha, Chaturvedi (2006). Regular generalized closed sets in in intuitionistic fuzzy topology, Universitatea Din Dacau, Studii Si Cercetari Stiinti Ce, Seria: Matematica, 257-272.
- 11. Thirumalaiswamy, M. (2013). Intuitionistic fuzzy $g\alpha^{**}$ -closed sets, International Refereed Journal of Engineering and Sciences.11-16.
- 12. Zadeh, L. A. (1965). Fuzzy sets, Information and control. 338-353.